A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall.
Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain
Chersi Fabian;Ferro Marcello;Pezzulo Giovanni;Pirrelli Vito
2014
Abstract
A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.ancejournal | TOPICS IN COGNITIVE SCIENCE | - |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | - |
| dc.authority.orgunit | Istituto di Scienze e Tecnologie della Cognizione - ISTC | - |
| dc.authority.people | Chersi Fabian | it |
| dc.authority.people | Ferro Marcello | it |
| dc.authority.people | Pezzulo Giovanni | it |
| dc.authority.people | Pirrelli Vito | it |
| dc.collection.id.s | b3f88f24-048a-4e43-8ab1-6697b90e068e | * |
| dc.collection.name | 01.01 Articolo in rivista | * |
| dc.contributor.appartenenza | Istituto di Scienze e Tecnologie della Cognizione - ISTC | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.appartenenza.mi | 986 | * |
| dc.date.accessioned | 2024/02/17 21:49:58 | - |
| dc.date.available | 2024/02/17 21:49:58 | - |
| dc.date.issued | 2014 | - |
| dc.description.abstracteng | A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. | - |
| dc.description.affiliations | ISTC-CNR, Roma; ILC-CNR, Pisa; ISTC-CNR, Roma; ILC-CNR, Pisa | - |
| dc.description.allpeople | Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito | - |
| dc.description.allpeopleoriginal | Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito | - |
| dc.description.fulltext | none | en |
| dc.description.numberofauthors | 4 | - |
| dc.identifier.doi | 10.1111/tops.12094 | - |
| dc.identifier.isi | WOS:000340180000010 | - |
| dc.identifier.scopus | 2-s2.0-84904998720 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/256840 | - |
| dc.identifier.url | http://onlinelibrary.wiley.com/doi/10.1111/tops.12094/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false | - |
| dc.language.iso | eng | - |
| dc.relation.firstpage | 476 | - |
| dc.relation.issue | 3 | - |
| dc.relation.lastpage | 491 | - |
| dc.relation.numberofpages | 16 | - |
| dc.relation.volume | 6 | - |
| dc.subject.keywords | Motor chains | - |
| dc.subject.keywords | Lexical chains | - |
| dc.subject.keywords | Serial working memory | - |
| dc.subject.keywords | Computational modeling | - |
| dc.subject.keywords | Self-organizing maps | - |
| dc.subject.keywords | Somatotopic organization | - |
| dc.subject.keywords | Prediction | - |
| dc.subject.singlekeyword | Motor chains | * |
| dc.subject.singlekeyword | Lexical chains | * |
| dc.subject.singlekeyword | Serial working memory | * |
| dc.subject.singlekeyword | Computational modeling | * |
| dc.subject.singlekeyword | Self-organizing maps | * |
| dc.subject.singlekeyword | Somatotopic organization | * |
| dc.subject.singlekeyword | Prediction | * |
| dc.title | Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain | en |
| dc.type.driver | info:eu-repo/semantics/article | - |
| dc.type.full | 01 Contributo su Rivista::01.01 Articolo in rivista | it |
| dc.type.miur | 262 | - |
| dc.type.referee | Sì, ma tipo non specificato | - |
| dc.ugov.descaux1 | 283372 | - |
| iris.isi.extIssued | 2014 | - |
| iris.isi.extTitle | Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain | - |
| iris.orcid.lastModifiedDate | 2024/04/04 15:22:23 | * |
| iris.orcid.lastModifiedMillisecond | 1712236943232 | * |
| iris.scopus.extIssued | 2014 | - |
| iris.scopus.extTitle | Topological self-organization and prediction learning support both action and lexical chains in the brain | - |
| iris.sitodocente.maxattempts | 2 | - |
| iris.unpaywall.bestoahost | publisher | * |
| iris.unpaywall.bestoaversion | publishedVersion | * |
| iris.unpaywall.doi | 10.1111/tops.12094 | * |
| iris.unpaywall.hosttype | publisher | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.landingpage | https://doi.org/10.1111/tops.12094 | * |
| iris.unpaywall.metadataCallLastModified | 11/04/2025 05:07:25 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1744340845776 | - |
| iris.unpaywall.oastatus | bronze | * |
| iris.unpaywall.pdfurl | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tops.12094 | * |
| isi.authority.ancejournal | TOPICS IN COGNITIVE SCIENCE###1756-8757 | * |
| isi.category | VX | * |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Italy | - |
| isi.contributor.name | Fabian | - |
| isi.contributor.name | Marcello | - |
| isi.contributor.name | Giovanni | - |
| isi.contributor.name | Vito | - |
| isi.contributor.researcherId | FZW-4247-2022 | - |
| isi.contributor.researcherId | D-6260-2016 | - |
| isi.contributor.researcherId | AAY-3586-2020 | - |
| isi.contributor.researcherId | DXW-8155-2022 | - |
| isi.contributor.subaffiliation | Inst Cognit Sci & Technol | - |
| isi.contributor.subaffiliation | Inst Computat Linguist | - |
| isi.contributor.subaffiliation | Inst Cognit Sci & Technol | - |
| isi.contributor.subaffiliation | Inst Computat Linguist | - |
| isi.contributor.surname | Chersi | - |
| isi.contributor.surname | Ferro | - |
| isi.contributor.surname | Pezzulo | - |
| isi.contributor.surname | Pirrelli | - |
| isi.date.issued | 2014 | * |
| isi.description.abstracteng | A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. | * |
| isi.description.allpeopleoriginal | Chersi, F; Ferro, M; Pezzulo, G; Pirrelli, V; | * |
| isi.document.sourcetype | WOS.SSCI | * |
| isi.document.type | Article | * |
| isi.document.types | Article | * |
| isi.identifier.doi | 10.1111/tops.12094 | * |
| isi.identifier.eissn | 1756-8765 | * |
| isi.identifier.isi | WOS:000340180000010 | * |
| isi.journal.journaltitle | TOPICS IN COGNITIVE SCIENCE | * |
| isi.journal.journaltitleabbrev | TOP COGN SCI | * |
| isi.language.original | English | * |
| isi.publisher.place | 111 RIVER ST, HOBOKEN 07030-5774, NJ USA | * |
| isi.relation.firstpage | 476 | * |
| isi.relation.issue | 3 | * |
| isi.relation.lastpage | 491 | * |
| isi.relation.volume | 6 | * |
| isi.title | Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain | * |
| scopus.authority.ancejournal | TOPICS IN COGNITIVE SCIENCE###1756-8757 | * |
| scopus.category | 3205 | * |
| scopus.category | 3310 | * |
| scopus.category | 1709 | * |
| scopus.category | 2805 | * |
| scopus.category | 1702 | * |
| scopus.contributor.affiliation | Institute of Cognitive Sciences and Technologies, CNR | - |
| scopus.contributor.affiliation | Institute for Computational Linguistics, CNR | - |
| scopus.contributor.affiliation | Institute for Computational Linguistics, CNR | - |
| scopus.contributor.affiliation | Institute for Computational Linguistics, CNR | - |
| scopus.contributor.afid | 60012572 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.auid | 8360773500 | - |
| scopus.contributor.auid | 15759406100 | - |
| scopus.contributor.auid | 6508225279 | - |
| scopus.contributor.auid | 14833305800 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | 104078586 | - |
| scopus.contributor.dptid | 104078586 | - |
| scopus.contributor.dptid | 104078586 | - |
| scopus.contributor.name | Fabian | - |
| scopus.contributor.name | Marcello | - |
| scopus.contributor.name | Giovanni | - |
| scopus.contributor.name | Vito | - |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.surname | Chersi | - |
| scopus.contributor.surname | Ferro | - |
| scopus.contributor.surname | Pezzulo | - |
| scopus.contributor.surname | Pirrelli | - |
| scopus.date.issued | 2014 | * |
| scopus.description.abstracteng | A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. © 2014 Cognitive Science Society, Inc. | * |
| scopus.description.allpeopleoriginal | Chersi F.; Ferro M.; Pezzulo G.; Pirrelli V. | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.description.allpeopleoriginal | * |
| scopus.differences | scopus.description.abstracteng | * |
| scopus.document.type | ar | * |
| scopus.document.types | ar | * |
| scopus.identifier.doi | 10.1111/tops.12094 | * |
| scopus.identifier.eissn | 1756-8765 | * |
| scopus.identifier.pmid | 24935737 | * |
| scopus.identifier.pui | 53199564 | * |
| scopus.identifier.scopus | 2-s2.0-84904998720 | * |
| scopus.journal.sourceid | 19900191735 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | Wiley-Blackwell | * |
| scopus.relation.firstpage | 476 | * |
| scopus.relation.issue | 3 | * |
| scopus.relation.lastpage | 491 | * |
| scopus.relation.volume | 6 | * |
| scopus.subject.keywords | Computational modeling; Lexical chains; Motor chains; Prediction; Self-organizing maps; Serial working memory; Somatotopic organization; | * |
| scopus.title | Topological self-organization and prediction learning support both action and lexical chains in the brain | * |
| scopus.titleeng | Topological self-organization and prediction learning support both action and lexical chains in the brain | * |
| Appare nelle tipologie: | 01.01 Articolo in rivista | |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


