A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall.

Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain

Chersi Fabian;Ferro Marcello;Pezzulo Giovanni;Pirrelli Vito
2014

Abstract

A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall.
Campo DC Valore Lingua
dc.authority.ancejournal TOPICS IN COGNITIVE SCIENCE -
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.orgunit Istituto di Scienze e Tecnologie della Cognizione - ISTC -
dc.authority.people Chersi Fabian it
dc.authority.people Ferro Marcello it
dc.authority.people Pezzulo Giovanni it
dc.authority.people Pirrelli Vito it
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di Scienze e Tecnologie della Cognizione - ISTC *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.appartenenza.mi 986 *
dc.date.accessioned 2024/02/17 21:49:58 -
dc.date.available 2024/02/17 21:49:58 -
dc.date.issued 2014 -
dc.description.abstracteng A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. -
dc.description.affiliations ISTC-CNR, Roma; ILC-CNR, Pisa; ISTC-CNR, Roma; ILC-CNR, Pisa -
dc.description.allpeople Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito -
dc.description.allpeopleoriginal Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito -
dc.description.fulltext none en
dc.description.numberofauthors 4 -
dc.identifier.doi 10.1111/tops.12094 -
dc.identifier.isi WOS:000340180000010 -
dc.identifier.scopus 2-s2.0-84904998720 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/256840 -
dc.identifier.url http://onlinelibrary.wiley.com/doi/10.1111/tops.12094/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false -
dc.language.iso eng -
dc.relation.firstpage 476 -
dc.relation.issue 3 -
dc.relation.lastpage 491 -
dc.relation.numberofpages 16 -
dc.relation.volume 6 -
dc.subject.keywords Motor chains -
dc.subject.keywords Lexical chains -
dc.subject.keywords Serial working memory -
dc.subject.keywords Computational modeling -
dc.subject.keywords Self-organizing maps -
dc.subject.keywords Somatotopic organization -
dc.subject.keywords Prediction -
dc.subject.singlekeyword Motor chains *
dc.subject.singlekeyword Lexical chains *
dc.subject.singlekeyword Serial working memory *
dc.subject.singlekeyword Computational modeling *
dc.subject.singlekeyword Self-organizing maps *
dc.subject.singlekeyword Somatotopic organization *
dc.subject.singlekeyword Prediction *
dc.title Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.miur 262 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 283372 -
iris.isi.extIssued 2014 -
iris.isi.extTitle Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain -
iris.orcid.lastModifiedDate 2024/04/04 15:22:23 *
iris.orcid.lastModifiedMillisecond 1712236943232 *
iris.scopus.extIssued 2014 -
iris.scopus.extTitle Topological self-organization and prediction learning support both action and lexical chains in the brain -
iris.sitodocente.maxattempts 2 -
iris.unpaywall.bestoahost publisher *
iris.unpaywall.bestoaversion publishedVersion *
iris.unpaywall.doi 10.1111/tops.12094 *
iris.unpaywall.hosttype publisher *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://doi.org/10.1111/tops.12094 *
iris.unpaywall.metadataCallLastModified 11/04/2025 05:07:25 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1744340845776 -
iris.unpaywall.oastatus bronze *
iris.unpaywall.pdfurl https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tops.12094 *
isi.authority.ancejournal TOPICS IN COGNITIVE SCIENCE###1756-8757 *
isi.category VX *
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.name Fabian -
isi.contributor.name Marcello -
isi.contributor.name Giovanni -
isi.contributor.name Vito -
isi.contributor.researcherId FZW-4247-2022 -
isi.contributor.researcherId D-6260-2016 -
isi.contributor.researcherId AAY-3586-2020 -
isi.contributor.researcherId DXW-8155-2022 -
isi.contributor.subaffiliation Inst Cognit Sci & Technol -
isi.contributor.subaffiliation Inst Computat Linguist -
isi.contributor.subaffiliation Inst Cognit Sci & Technol -
isi.contributor.subaffiliation Inst Computat Linguist -
isi.contributor.surname Chersi -
isi.contributor.surname Ferro -
isi.contributor.surname Pezzulo -
isi.contributor.surname Pirrelli -
isi.date.issued 2014 *
isi.description.abstracteng A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. *
isi.description.allpeopleoriginal Chersi, F; Ferro, M; Pezzulo, G; Pirrelli, V; *
isi.document.sourcetype WOS.SSCI *
isi.document.type Article *
isi.document.types Article *
isi.identifier.doi 10.1111/tops.12094 *
isi.identifier.eissn 1756-8765 *
isi.identifier.isi WOS:000340180000010 *
isi.journal.journaltitle TOPICS IN COGNITIVE SCIENCE *
isi.journal.journaltitleabbrev TOP COGN SCI *
isi.language.original English *
isi.publisher.place 111 RIVER ST, HOBOKEN 07030-5774, NJ USA *
isi.relation.firstpage 476 *
isi.relation.issue 3 *
isi.relation.lastpage 491 *
isi.relation.volume 6 *
isi.title Topological Self-Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain *
scopus.authority.ancejournal TOPICS IN COGNITIVE SCIENCE###1756-8757 *
scopus.category 3205 *
scopus.category 3310 *
scopus.category 1709 *
scopus.category 2805 *
scopus.category 1702 *
scopus.contributor.affiliation Institute of Cognitive Sciences and Technologies, CNR -
scopus.contributor.affiliation Institute for Computational Linguistics, CNR -
scopus.contributor.affiliation Institute for Computational Linguistics, CNR -
scopus.contributor.affiliation Institute for Computational Linguistics, CNR -
scopus.contributor.afid 60012572 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.auid 8360773500 -
scopus.contributor.auid 15759406100 -
scopus.contributor.auid 6508225279 -
scopus.contributor.auid 14833305800 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid 104078586 -
scopus.contributor.dptid 104078586 -
scopus.contributor.dptid 104078586 -
scopus.contributor.name Fabian -
scopus.contributor.name Marcello -
scopus.contributor.name Giovanni -
scopus.contributor.name Vito -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation -
scopus.contributor.surname Chersi -
scopus.contributor.surname Ferro -
scopus.contributor.surname Pezzulo -
scopus.contributor.surname Pirrelli -
scopus.date.issued 2014 *
scopus.description.abstracteng A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. © 2014 Cognitive Science Society, Inc. *
scopus.description.allpeopleoriginal Chersi F.; Ferro M.; Pezzulo G.; Pirrelli V. *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.description.allpeopleoriginal *
scopus.differences scopus.description.abstracteng *
scopus.document.type ar *
scopus.document.types ar *
scopus.identifier.doi 10.1111/tops.12094 *
scopus.identifier.eissn 1756-8765 *
scopus.identifier.pmid 24935737 *
scopus.identifier.pui 53199564 *
scopus.identifier.scopus 2-s2.0-84904998720 *
scopus.journal.sourceid 19900191735 *
scopus.language.iso eng *
scopus.publisher.name Wiley-Blackwell *
scopus.relation.firstpage 476 *
scopus.relation.issue 3 *
scopus.relation.lastpage 491 *
scopus.relation.volume 6 *
scopus.subject.keywords Computational modeling; Lexical chains; Motor chains; Prediction; Self-organizing maps; Serial working memory; Somatotopic organization; *
scopus.title Topological self-organization and prediction learning support both action and lexical chains in the brain *
scopus.titleeng Topological self-organization and prediction learning support both action and lexical chains in the brain *
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact