The problem of optimal microscopic swimming in a noisy environment is analyzed. A simplified model in which propulsion is generated by the relative motion of three spheres connected by immaterial links has been considered. We show that an optimized noisy microswimmer requires less power for propulsion (on average) than an optimal noiseless counterpart migrating with identical mean velocity and swimming stroke amplitude. We also show that noise can be used to overcome some of the limitations of the scallop theorem and have a swimmer that is able to propel itself with control over just one degree of freedom. © 2014 American Physical Society.

Pros and cons of swimming in a noisy environment

Olla P
2014

Abstract

The problem of optimal microscopic swimming in a noisy environment is analyzed. A simplified model in which propulsion is generated by the relative motion of three spheres connected by immaterial links has been considered. We show that an optimized noisy microswimmer requires less power for propulsion (on average) than an optimal noiseless counterpart migrating with identical mean velocity and swimming stroke amplitude. We also show that noise can be used to overcome some of the limitations of the scallop theorem and have a swimmer that is able to propel itself with control over just one degree of freedom. © 2014 American Physical Society.
2014
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/258733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact