Slabs with non-uniform doping distribution are studied with the aim of reducing thermal deformations in high-energy high-average-power Yb:YAG slab systems. We present a numerical analysis based on Finite Element Mesh (FEM) methods suitable to model non-uniform devices. The thermal variation of the refractive index, the end-faces deformations and the photo-elastic effect have been calculated in order to estimate the total thermal-lens effect. The stress distributions are also obtained. Some results of this numerical approach are compared to experimental thermal lens measurements in a simple geometry for both uniform and structured samples, in order to validate the numerical procedures. Finally we compare numerical simulations for different single- or double-sided pumping and cooling geometries. They show that structured slabs can reduce thermal gradients with respect to uniformly doped means with comparable absorption and geometry. This means a reduction of thermal lens effect and thus an increase of maximum allowed pump power loading. Previous literature reports some work made with structured slabs where higher doping was located in layers with lower pump radiation levels, in order to get a more uniform absorption. Interestingly our modeling indicates that reduced thermal effects are instead obtained when a higher doping is located close to the cooled surfaces. © 2013 SPIE.

Characterization of Yb:YAG active slab media based on a layered structure with different doping

Lapucci Antonio;Ciofini Marco;Esposito Laura;Ferrara Pasquale;Gizzi Leonida A;Hostasa Jan;Pirri A;Toci Guido;Vannini Matteo
2013

Abstract

Slabs with non-uniform doping distribution are studied with the aim of reducing thermal deformations in high-energy high-average-power Yb:YAG slab systems. We present a numerical analysis based on Finite Element Mesh (FEM) methods suitable to model non-uniform devices. The thermal variation of the refractive index, the end-faces deformations and the photo-elastic effect have been calculated in order to estimate the total thermal-lens effect. The stress distributions are also obtained. Some results of this numerical approach are compared to experimental thermal lens measurements in a simple geometry for both uniform and structured samples, in order to validate the numerical procedures. Finally we compare numerical simulations for different single- or double-sided pumping and cooling geometries. They show that structured slabs can reduce thermal gradients with respect to uniformly doped means with comparable absorption and geometry. This means a reduction of thermal lens effect and thus an increase of maximum allowed pump power loading. Previous literature reports some work made with structured slabs where higher doping was located in layers with lower pump radiation levels, in order to get a more uniform absorption. Interestingly our modeling indicates that reduced thermal effects are instead obtained when a higher doping is located close to the cooled surfaces. © 2013 SPIE.
2013
Istituto di Fisica Applicata - IFAC
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Istituto Nazionale di Ottica - INO
Istituto Nazionale di Ottica - INO
9780819495822
Ceramic lasers
High Energy Lasers
Slab lasers
Yb:YAG Lasers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/259818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact