The presence of self-absorption of emission lines is usually an undesired effect in laser-induced breakdown spectroscopy because it introduces non linear effects in the growth of line intensity versus the concentration of the emitting species. Several methods have been proposed in recent years for identifying and quantifying self-absorption in the emission spectra. After this diagnostic stage, the lines affected by self-absorption are usually disregarded; otherwise, appropriate corrective factors are applied to their intensity before the utilization for analytical purposes. Changing the point of view, this paper remarks as self-absorption can provide useful information for analyzing the composition of laser-induced plasmas and for their characterization. Whenever the extent of self-absorption is quantified, in fact, the optical depth of the line can be rapidly calculated; then, for plasmas in local thermodynamic equilibrium conditions, the columnar density of the emitting species can be derived. Assuming the plasma homogeneity, the concentration ratio between different elements can be obtained. Moreover, in particular cases, the columnar densities can be used to calculate the plasma temperature and the absolute number densities of plasma species. Some applications of the method are reported in the paper and potentialities and limitations are discussed. (C) 2012 Elsevier B.V. All rights reserved.

Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis

Cristoforetti G;Tognoni E
2013

Abstract

The presence of self-absorption of emission lines is usually an undesired effect in laser-induced breakdown spectroscopy because it introduces non linear effects in the growth of line intensity versus the concentration of the emitting species. Several methods have been proposed in recent years for identifying and quantifying self-absorption in the emission spectra. After this diagnostic stage, the lines affected by self-absorption are usually disregarded; otherwise, appropriate corrective factors are applied to their intensity before the utilization for analytical purposes. Changing the point of view, this paper remarks as self-absorption can provide useful information for analyzing the composition of laser-induced plasmas and for their characterization. Whenever the extent of self-absorption is quantified, in fact, the optical depth of the line can be rapidly calculated; then, for plasmas in local thermodynamic equilibrium conditions, the columnar density of the emitting species can be derived. Assuming the plasma homogeneity, the concentration ratio between different elements can be obtained. Moreover, in particular cases, the columnar densities can be used to calculate the plasma temperature and the absolute number densities of plasma species. Some applications of the method are reported in the paper and potentialities and limitations are discussed. (C) 2012 Elsevier B.V. All rights reserved.
2013
Istituto Nazionale di Ottica - INO
Laser-induced breakdown spectroscopy
Self-absorption
Columnar density
Plasma temperature
Quantitative analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? ND
social impact