Polymorphic crystalline microfibers from an achiral octithiophene with one S-hexyl substituent per ring are separately and reproducibly grown with the same characteristics on various solid surfaces, including the interdigitated electrodes/SiO2 surface of a bottomcontact field-effect transistor. The arrangement of the same molecule in two diverse supramolecular structures leads to markedly different electronic, optical, and charge mobility properties. The microfibers--straight and yellow emitting or helical and red emitting--exhibit p-type charge transport characteristics, with the yellow ones showing a charge mobility and on/off current ratio of one and three orders of magnitude, respectively, greater than the red ones. Both forms show circular dichroism signals with significant differences from one form to the other. DFT calculations show that the octithiophene exists in two different quasi-equienergetic conformations aggregating with diverse orientations of the substituents. This result suggests that the observed polymorphism is conformational in nature. The self-assembly, driven by sulfur-sulfur non-bonding interactions, amplifies the small property differences between conformers, leading to quite different bulk properties.

Polymorphism in Crystalline Microfibers of Achiral Octithiophene: The Effect on Charge Transport, Supramolecular Chirality and Optical Properties

Di Maria F;Fabiano E;Gentili D;Gazzano M;Zanelli A;Cavallini M;Della Sala F;Gigli G;Barbarella G
2014

Abstract

Polymorphic crystalline microfibers from an achiral octithiophene with one S-hexyl substituent per ring are separately and reproducibly grown with the same characteristics on various solid surfaces, including the interdigitated electrodes/SiO2 surface of a bottomcontact field-effect transistor. The arrangement of the same molecule in two diverse supramolecular structures leads to markedly different electronic, optical, and charge mobility properties. The microfibers--straight and yellow emitting or helical and red emitting--exhibit p-type charge transport characteristics, with the yellow ones showing a charge mobility and on/off current ratio of one and three orders of magnitude, respectively, greater than the red ones. Both forms show circular dichroism signals with significant differences from one form to the other. DFT calculations show that the octithiophene exists in two different quasi-equienergetic conformations aggregating with diverse orientations of the substituents. This result suggests that the observed polymorphism is conformational in nature. The self-assembly, driven by sulfur-sulfur non-bonding interactions, amplifies the small property differences between conformers, leading to quite different bulk properties.
2014
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto Nanoscienze - NANO
Crystalline Microfibers
Charge Transport
Supramolecular Chirality
Optical Properties
File in questo prodotto:
File Dimensione Formato  
prod_282510-doc_110257.pdf

solo utenti autorizzati

Descrizione: Polymorphism in Crystalline Microfibers of Achiral Octithiophene: The Effect on Charge Transport, Supramolecular Chirality and Optical Properties
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/264567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact