Appropriate functionalization of the cyclometalated ligand, L, and the choice of the ancillary ligand, X, allows the dipolar second-order nonlinear optical response of luminescent [PtLX] complexes--in which L is an N^C^N-coordinated 1,3-di(2-pyridyl)benzene ligand and X is a monodentate halide or acetylide ligand--to be controlled. The complementary use of electric-field-induced second-harmonic (EFISH) generation and harmonic light scattering (HLS) measurements demonstrates how the quadratic hyperpolarizability of this appealing family of multifunctional chromophores, characterized by a good transparency throughout much of the visible region, is dominated by an octupolar contribution.
Tuning the Dipolar Second-Order Nonlinear Optical Properties of Cyclometalated Platinum(II) Complexes with Tridentate N^C^N Binding Ligands
Lobello Maria Grazia;De Angelis Filippo;Fantacci Simona;
2013
Abstract
Appropriate functionalization of the cyclometalated ligand, L, and the choice of the ancillary ligand, X, allows the dipolar second-order nonlinear optical response of luminescent [PtLX] complexes--in which L is an N^C^N-coordinated 1,3-di(2-pyridyl)benzene ligand and X is a monodentate halide or acetylide ligand--to be controlled. The complementary use of electric-field-induced second-harmonic (EFISH) generation and harmonic light scattering (HLS) measurements demonstrates how the quadratic hyperpolarizability of this appealing family of multifunctional chromophores, characterized by a good transparency throughout much of the visible region, is dominated by an octupolar contribution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


