In this paper, we consider the task of recognizing epigraphs in images such as photos taken using mobile devices. Given a set of 17,155 photos related to 14,560 epigraphs, we used a k-NearestNeighbor approach in order to perform the recognition. The contribution of this work is in evaluating state-of-the-art visual object recognition techniques in this specific context. The experimental results conducted show that Vector of Locally Aggregated Descriptors obtained aggregating SIFT descriptors is the best choice for this task.

Aggregating local descriptors for epigraphs recognition

Amato G;Falchi F;Rabitti F;Vadicamo L
2014

Abstract

In this paper, we consider the task of recognizing epigraphs in images such as photos taken using mobile devices. Given a set of 17,155 photos related to 14,560 epigraphs, we used a k-NearestNeighbor approach in order to perform the recognition. The contribution of this work is in evaluating state-of-the-art visual object recognition techniques in this specific context. The experimental results conducted show that Vector of Locally Aggregated Descriptors obtained aggregating SIFT descriptors is the best choice for this task.
2014
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Inscriptions
Visual Recognition
Object Recognition
Content-Based Image Retrieval
Bag-of-Features
VLAD
File in questo prodotto:
File Dimensione Formato  
prod_295708-doc_84950.pdf

solo utenti autorizzati

Descrizione: Aggregating local descriptors for epigraphs recognition
Tipologia: Versione Editoriale (PDF)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/265638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact