A flexible host has been selected to achieve, for the first time, functional nanocomposites based on CdSe@ZnS core-shell type quantum dots (QDs) and Au nanoparticles (NPs), simultaneously dispersed in a polymer matrix. Coherent interactions between QDs and plasmonic Au NPs embedded in PDMS films have been demonstrated to lead to a relevant enhancement of the absorption cross-section of the QDs, remarkably modifying the optical response of the entire system. Optical and time resolved spectroscopy studies revealed an active gain-plasmon feedback behind the super-absorbing overall effect.

Plasmon mediated super-absorber flexible nanocomposites for metamaterials

De Luca;Antonio;Depalo;Nicoletta;Fanizza;Elisabetta;Striccoli;Marinella;Curri;Strangi;Giuseppe
2013

Abstract

A flexible host has been selected to achieve, for the first time, functional nanocomposites based on CdSe@ZnS core-shell type quantum dots (QDs) and Au nanoparticles (NPs), simultaneously dispersed in a polymer matrix. Coherent interactions between QDs and plasmonic Au NPs embedded in PDMS films have been demonstrated to lead to a relevant enhancement of the absorption cross-section of the QDs, remarkably modifying the optical response of the entire system. Optical and time resolved spectroscopy studies revealed an active gain-plasmon feedback behind the super-absorbing overall effect.
2013
Istituto per i Processi Chimico-Fisici - IPCF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/266543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact