High order harmonic generation (HHG) has shown its impact on several applications in Attosecond Science and Atomic and Molecular Physics. Owing to the complexity of the experimental setup for the generation and characterization of harmonics, as well as to the large computational costs of numerical modelling, HHG is generally performed and modelled in collinear geometry. Recently, several experiments have been performed exploiting non-collinear geometry, such as HHG in a grating of excited molecules created by crossing beams. In such studies, harmonics were observed at propagation directions different from those of the driving pulses; moreover the scattered harmonics were angularly dispersed. In this work we report on a new regime of HHG driven by multiple beams, where the harmonics are generated by three synchronized, intense laser pulses organized in a non-planar geometry. Although the configuration we explore is well within the strong-field regime, the scattered harmonics we observe are not angularly dispersed.

Non-collinear high-order harmonic generation by three interfering laser beams

Negro M;Facciala D;Calegari F;Frassetto F;Poletto L;Vozzi C;Stagira S
2014

Abstract

High order harmonic generation (HHG) has shown its impact on several applications in Attosecond Science and Atomic and Molecular Physics. Owing to the complexity of the experimental setup for the generation and characterization of harmonics, as well as to the large computational costs of numerical modelling, HHG is generally performed and modelled in collinear geometry. Recently, several experiments have been performed exploiting non-collinear geometry, such as HHG in a grating of excited molecules created by crossing beams. In such studies, harmonics were observed at propagation directions different from those of the driving pulses; moreover the scattered harmonics were angularly dispersed. In this work we report on a new regime of HHG driven by multiple beams, where the harmonics are generated by three synchronized, intense laser pulses organized in a non-planar geometry. Although the configuration we explore is well within the strong-field regime, the scattered harmonics we observe are not angularly dispersed.
2014
Istituto di fotonica e nanotecnologie - IFN
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/269301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact