It is shown that the nonlinear wave equation $\partial^2_t \phi -\partial^2_x \phi -\mu_0 \partial_x(\partial_x \phi)^3=0$, which is the continuum limit ofthe Fermi-Pasta-Ulam $\beta$ model, has a positive Lyapunov exponent $\lambda_1$ , whose analytic energy dependence isgiven. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependenceof $\lambda_1$ for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We alsodiscuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in thedynamical description.
Analytic Lyapunov exponents in a classical nonlinear field equation
Franzosi Roberto;Franzosi Roberto;
2000
Abstract
It is shown that the nonlinear wave equation $\partial^2_t \phi -\partial^2_x \phi -\mu_0 \partial_x(\partial_x \phi)^3=0$, which is the continuum limit ofthe Fermi-Pasta-Ulam $\beta$ model, has a positive Lyapunov exponent $\lambda_1$ , whose analytic energy dependence isgiven. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependenceof $\lambda_1$ for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We alsodiscuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in thedynamical description.File | Dimensione | Formato | |
---|---|---|---|
prod_337016-doc_105456.pdf
non disponibili
Descrizione: Analytic Lyapunov exponents in a classical nonlinear field equation
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
77.81 kB
Formato
Adobe PDF
|
77.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.