It is shown that the nonlinear wave equation $\partial^2_t \phi -\partial^2_x \phi -\mu_0 \partial_x(\partial_x \phi)^3=0$, which is the continuum limit ofthe Fermi-Pasta-Ulam $\beta$ model, has a positive Lyapunov exponent $\lambda_1$ , whose analytic energy dependence isgiven. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependenceof $\lambda_1$ for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We alsodiscuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in thedynamical description.

Analytic Lyapunov exponents in a classical nonlinear field equation

Franzosi Roberto;Franzosi Roberto;
2000

Abstract

It is shown that the nonlinear wave equation $\partial^2_t \phi -\partial^2_x \phi -\mu_0 \partial_x(\partial_x \phi)^3=0$, which is the continuum limit ofthe Fermi-Pasta-Ulam $\beta$ model, has a positive Lyapunov exponent $\lambda_1$ , whose analytic energy dependence isgiven. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependenceof $\lambda_1$ for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We alsodiscuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in thedynamical description.
2000
Istituto Nazionale di Ottica - INO
Bose-Einstein condensation
File in questo prodotto:
File Dimensione Formato  
prod_337016-doc_105456.pdf

non disponibili

Descrizione: Analytic Lyapunov exponents in a classical nonlinear field equation
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 77.81 kB
Formato Adobe PDF
77.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/271223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact