We report upon the numerical computation of the Euler characteristic chi (a topologic invariant) of the equipotential hypersurfaces Sigma(v), of the configuration space of the two-dimensional lattice phi(4) model. The pattern chi(Sigma(v)) versus v (potential energy) reveals that a major topology change in the family {Sigma(v)}(v is an element of R) is at the origin of the phase transition in the model considered. The direct evidence given here-of the relevance of topology for phase transitions-is obtained through a general method that can be applied to any other model.

Topology and phase transitions: Paradigmatic evidence

Franzosi R;
2000

Abstract

We report upon the numerical computation of the Euler characteristic chi (a topologic invariant) of the equipotential hypersurfaces Sigma(v), of the configuration space of the two-dimensional lattice phi(4) model. The pattern chi(Sigma(v)) versus v (potential energy) reveals that a major topology change in the family {Sigma(v)}(v is an element of R) is at the origin of the phase transition in the model considered. The direct evidence given here-of the relevance of topology for phase transitions-is obtained through a general method that can be applied to any other model.
2000
Istituto Nazionale di Ottica - INO
Bose-Einstein condensation
File in questo prodotto:
File Dimensione Formato  
prod_337022-doc_105458.pdf

non disponibili

Descrizione: Topology and Phase Transitions: Paradigmatic Evidence
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 91.51 kB
Formato Adobe PDF
91.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/271229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 57
social impact