In this report, we show that nitric oxide affects mitochondrial functionality in plant cells and reduces total cell respiration due to strong inhibition of the cytochrome pathway. The residual respiration depends on the alternative pathway and novel synthesis of alternative oxidase occurs. These modifications are associated with depolarisation of the mitochondrial membrane potential and release of cytochrome c from mitochondria, suggesting a conserved signalling pathway in plants and animals. This signal cascade is triggered at the mitochondrial level and induces about 20% of cell death. In order to achieve a higher level of cell death, the addition of H2O2 is necessary.

Nitric oxide affects plant mitochondrial functionality in vivo

Carimi F;
2002

Abstract

In this report, we show that nitric oxide affects mitochondrial functionality in plant cells and reduces total cell respiration due to strong inhibition of the cytochrome pathway. The residual respiration depends on the alternative pathway and novel synthesis of alternative oxidase occurs. These modifications are associated with depolarisation of the mitochondrial membrane potential and release of cytochrome c from mitochondria, suggesting a conserved signalling pathway in plants and animals. This signal cascade is triggered at the mitochondrial level and induces about 20% of cell death. In order to achieve a higher level of cell death, the addition of H2O2 is necessary.
2002
Istituto di Bioscienze e Biorisorse
Nitric oxide
Mitochondrion
Alternative oxidase
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/27314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 162
  • ???jsp.display-item.citation.isi??? ND
social impact