Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
The diffusion process of N hard rods in a 1D interval of length L(->infinity) is studied using scaling arguments and an asymptotic analysis of the exact N-particle probability density function (PDF). In the class of such systems, the universal scaling law of the tagged particle's mean absolute displacement reads, <vertical bar r vertical bar >approximate to <vertical bar r vertical bar > free/n(mu), where <vertical bar r vertical bar > free is the result for a free particle in the studied system and n is the number of particles in the covered length. The exponent mu is given by, mu=1/(1+alpha), where alpha is associated with the particles' density law of the system, rho approximate to rho 0L(-alpha), 0 <=alpha <= 1. The scaling law for <vertical bar r vertical bar > leads to, <vertical bar r vertical bar >approximate to rho 0((alpha-1)/2)(<vertical bar r vertical bar > free)((1+alpha)/2), an equation that predicts a smooth interpolation between single-file diffusion and free-particle diffusion depending on the particles' density law, and holds for any underlying dynamics. In particular, < r(2)>approximate to t(1+alpha/2) for normal diffusion, with a Gaussian PDF in space for any value of alpha (deduced by a complementary analysis), and, < r2 >approximate to t(beta(1+alpha)/2) , for anomalous diffusion in which the system's particles all have the same power-law waiting time PDF for individual events, psi approximate to t(-1-beta), 0 <beta < 1. Our analysis shows that the scaling < r(2)>approximate to t(1/2) in a "standard" single file is a direct result of the fixed particles' density condition imposed on the system, alpha=0. Copyright (C) EPLA, 2008.
The diffusion process of N hard rods in a 1D interval of length L(->infinity) is studied using scaling arguments and an asymptotic analysis of the exact N-particle probability density function (PDF). In the class of such systems, the universal scaling law of the tagged particle's mean absolute displacement reads, approximate to free/n(mu), where free is the result for a free particle in the studied system and n is the number of particles in the covered length. The exponent mu is given by, mu=1/(1+alpha), where alpha is associated with the particles' density law of the system, rho approximate to rho 0L(-alpha), 0 <=alpha <= 1. The scaling law for leads to, approximate to rho 0((alpha-1)/2)( free)((1+alpha)/2), an equation that predicts a smooth interpolation between single-file diffusion and free-particle diffusion depending on the particles' density law, and holds for any underlying dynamics. In particular, < r(2)>approximate to t(1+alpha/2) for normal diffusion, with a Gaussian PDF in space for any value of alpha (deduced by a complementary analysis), and, < r2 >approximate to t(beta(1+alpha)/2) , for anomalous diffusion in which the system's particles all have the same power-law waiting time PDF for individual events, psi approximate to t(-1-beta), 0 approximate to t(1/2) in a "standard" single file is a direct result of the fixed particles' density condition imposed on the system, alpha=0. Copyright (C) EPLA, 2008.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/275853
Citazioni
ND
ND
23
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.