We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number <190 k, before the onset of the drag-crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid-cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder's surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid-body interactions by focusing directly on the effect of the flow on the model surface.
Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow
Capone A;Miozzi M
2015
Abstract
We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number <190 k, before the onset of the drag-crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid-cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder's surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid-body interactions by focusing directly on the effect of the flow on the model surface.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.