Our approach to the microblog filtering task is based on learning a relevance classifier from an initial training set of relevant and non relevant tweets, generated by using a simple retrieval method. The classifier is then retrained using the (simulated) user feedback collected during the training process, in order to improve its accuracy as the filtering process goes on. In the official runs the system scored low effectiveness values, suffering a strong imbalance toward recall.

ISTI@ TREC Microblog track 2012: real-time filtering through supervised learning

Esuli A;
2012

Abstract

Our approach to the microblog filtering task is based on learning a relevance classifier from an initial training set of relevant and non relevant tweets, generated by using a simple retrieval method. The classifier is then retrained using the (simulated) user feedback collected during the training process, in order to improve its accuracy as the filtering process goes on. In the official runs the system scored low effectiveness values, suffering a strong imbalance toward recall.
2012
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Microblog search
Twitter
Realtime filtering
H.3.3 Information Sear
File in questo prodotto:
File Dimensione Formato  
prod_315845-doc_92069.pdf

accesso aperto

Descrizione: ISTI@ TREC Microblog track 2012: real-time filtering through supervised learning
Tipologia: Versione Editoriale (PDF)
Dimensione 206.53 kB
Formato Adobe PDF
206.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/281210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact