Na+-independent [3H].gamma.-aminobutyric acid (GABA) binding to membrane preparations from frontal cortex, hippocampus, and thalamus is competitively inhibited by the in vitro addition of a naturally occurring pyrimidinic compound, uridine. Moreover, the intraperitoneal injection of uridine produces a dose-related decrease in the cerebellar content of cyclic GMP and antagonizes its increase elicited by bicuculline. The pyrimidinic compound also shows an antagonism toward bicuculline-induced seizures. The relationship between the anti-convulsant actions of uridine and GABA-mediated inhibitory neurotransmission is discussed in terms of an activation of GABA receptor function by the naturally occurring pyrimidinic compound.
INTERACTION BETWEEN URIDINE AND GAMMA AMINOBUTYRIC-ACID-MEDIATED INHIBITORY TRANSMISSION STUDIES IN-VIVO AND IN-VITRO
GUARNERI P;
1985
Abstract
Na+-independent [3H].gamma.-aminobutyric acid (GABA) binding to membrane preparations from frontal cortex, hippocampus, and thalamus is competitively inhibited by the in vitro addition of a naturally occurring pyrimidinic compound, uridine. Moreover, the intraperitoneal injection of uridine produces a dose-related decrease in the cerebellar content of cyclic GMP and antagonizes its increase elicited by bicuculline. The pyrimidinic compound also shows an antagonism toward bicuculline-induced seizures. The relationship between the anti-convulsant actions of uridine and GABA-mediated inhibitory neurotransmission is discussed in terms of an activation of GABA receptor function by the naturally occurring pyrimidinic compound.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.