The mitochondriotropic compound 7-O-(4-triphenylphosphoniumbutyl)quercetin iodide (Q-7BTPI) in the AM concentration range caused necrotic death of cultured cells by acting as a prooxidant, with generation of superoxide anion in the mitochondria. Externally added membrane-permeating superoxide dismutase or catalase largely prevented death. Rescue by permeant catalase indicates that the toxicant is H2O2, or reactive species derived from it. Rescue by permeant dismutase suggests the possibility of a chain mechanism of H2O2 production, in which dismutation of superoxide constitutes a termination step. Oxidative stress was due to the presence of free phenolic hydroxyls and to accumulation in mitochondria, since the analogous mitochondriotropic per-O-methylated compound -3,3',4',5-tetra-O-methyl,7-O-(4-triphenylphosphoniumbutyl) quercetin iodide (QTM-7BTPI) or Quercetin itself induced no or little superoxide production and cell death. Q-7BTPI did not cause a significant perturbation of the mitochondrial transmembrane potential or of respiration in cells. On the other hand its presence led to inhibition of glutathione peroxidase, an effect expected to accentuate oxidative stress by interfering with the elimination of H2O2. An exogenous permeable glutathione precursor determined a strong increase of cellular glutathione levels but did not rescue the cells. Death induction was selective for fast-growing C-26 tumoral cells and mouse embryonic fibroblasts (MEFs) while sparing slow-growing MEFs. This suggests a possible use of Q-7BTPI as a chemotherapeutic agent. (C) 2012 Elsevier B.V. All rights reserved.

Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms

Biasutto Lucia;Giorgio Valentina;Zoratti Mario
2012

Abstract

The mitochondriotropic compound 7-O-(4-triphenylphosphoniumbutyl)quercetin iodide (Q-7BTPI) in the AM concentration range caused necrotic death of cultured cells by acting as a prooxidant, with generation of superoxide anion in the mitochondria. Externally added membrane-permeating superoxide dismutase or catalase largely prevented death. Rescue by permeant catalase indicates that the toxicant is H2O2, or reactive species derived from it. Rescue by permeant dismutase suggests the possibility of a chain mechanism of H2O2 production, in which dismutation of superoxide constitutes a termination step. Oxidative stress was due to the presence of free phenolic hydroxyls and to accumulation in mitochondria, since the analogous mitochondriotropic per-O-methylated compound -3,3',4',5-tetra-O-methyl,7-O-(4-triphenylphosphoniumbutyl) quercetin iodide (QTM-7BTPI) or Quercetin itself induced no or little superoxide production and cell death. Q-7BTPI did not cause a significant perturbation of the mitochondrial transmembrane potential or of respiration in cells. On the other hand its presence led to inhibition of glutathione peroxidase, an effect expected to accentuate oxidative stress by interfering with the elimination of H2O2. An exogenous permeable glutathione precursor determined a strong increase of cellular glutathione levels but did not rescue the cells. Death induction was selective for fast-growing C-26 tumoral cells and mouse embryonic fibroblasts (MEFs) while sparing slow-growing MEFs. This suggests a possible use of Q-7BTPI as a chemotherapeutic agent. (C) 2012 Elsevier B.V. All rights reserved.
2012
Istituto di Neuroscienze - IN -
Mitochondriotropic compounds
Mitocans
Quercetin
Necrosis
Reactive oxygen species
Glutathione
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact