The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO4+delta), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.

Witnessing the formation and relaxation of dressed quasi-particles in a strongly correlated electron system

De Filippis Giulio;Cataudella Vittorio;Amaricci Adriano;Dal Conte Stefano;Cerullo Giulio;Capone Massimo;Parmigiani Fulvio;
2014

Abstract

The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO4+delta), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.
2014
Istituto di fotonica e nanotecnologie - IFN
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact