Phosphatidylinositol-4,5-bisphosphate was proposed to be an important regulator of large dense-core vesicle exocytosis from neuroendocrine tissues. Here, we have examined the kinetics of secretion in chromaffin cells from mice lacking phosphatidylinositol phosphate kinase type l gamma, the major neuronal phosphatidylinositol-4-phosphate 5-kinase. Absence of this enzyme caused a reduction of the readily releasable vesicle pool and its refilling rate, with a small increase in morphologically docked vesicles, indicating a defect in vesicle priming. Furthermore, amperometry revealed a delay in fusion pore expansion. These results provide direct genetic evidence for a key role of phosphatidylinositol-4,5-bisphosphate synthesis in the regulation of large dense-core vesicle fusion dynamics.
Phosphatidylinositol phosphate kinase type l gamma regulates dynamics of large dense-core vesicle fusion
Cestra G;
2005
Abstract
Phosphatidylinositol-4,5-bisphosphate was proposed to be an important regulator of large dense-core vesicle exocytosis from neuroendocrine tissues. Here, we have examined the kinetics of secretion in chromaffin cells from mice lacking phosphatidylinositol phosphate kinase type l gamma, the major neuronal phosphatidylinositol-4-phosphate 5-kinase. Absence of this enzyme caused a reduction of the readily releasable vesicle pool and its refilling rate, with a small increase in morphologically docked vesicles, indicating a defect in vesicle priming. Furthermore, amperometry revealed a delay in fusion pore expansion. These results provide direct genetic evidence for a key role of phosphatidylinositol-4,5-bisphosphate synthesis in the regulation of large dense-core vesicle fusion dynamics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.