In this study we lay the groundwork for a graphene-based fundamental ruler at the nanoscale. It relies on the efficient energy-transfer mechanism between single quantum emitters and low-doped graphene monolayers. Our experiments, conducted with dibenzoterrylene (DBT) molecules, allow going beyond ensemble analysis due to the emitter photo-stability and brightness. A quantitative characterization of the fluorescence decayrate modification is presented and compared to a simple model, showing agreement with the d(-4) dependence, a genuine manifestation of a dipole interacting with a 2D material. With DBT molecules, we can estimate a potential uncertainty in position measurements as low as 5 nm in the range below 30 nm.

Single-molecule study for a graphene-based nanoposition sensor

Mazzamuto G;Cataliotti F S;Toninelli C
2014

Abstract

In this study we lay the groundwork for a graphene-based fundamental ruler at the nanoscale. It relies on the efficient energy-transfer mechanism between single quantum emitters and low-doped graphene monolayers. Our experiments, conducted with dibenzoterrylene (DBT) molecules, allow going beyond ensemble analysis due to the emitter photo-stability and brightness. A quantitative characterization of the fluorescence decayrate modification is presented and compared to a simple model, showing agreement with the d(-4) dependence, a genuine manifestation of a dipole interacting with a 2D material. With DBT molecules, we can estimate a potential uncertainty in position measurements as low as 5 nm in the range below 30 nm.
2014
Istituto Nazionale di Ottica - INO
graphene
nano-sensor
single molecule
spectroscopy
lifetime measurements
energy transfer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact