The selection of appropriate biomaterials that promote cellular adhesion and growth is particularly important for the in vitro reconstruction of neuronal network. This study focused on the development of new polymeric membranes in flat and tubular (hollow-fibre) configurations as novel biomaterials for neuronal outgrowth. Two membrane systems constituted by modified polyetheretherketone (PEEK-WC) and polyacrylonitrile (PAN) membranes were developed and used for the culture of hamster hippocampal neurons. We demonstrated that all investigated membranes supported the adhesion and growth of hippocampal neurons enhancing neuronal differentiation and neurite alignment. The differences in cell behaviours between cells cultured on flat and hollow-fibre (HF) membranes were highlighted by the quantitative analysis of neuronal marker fluorescence intensity, morphometric analysis, RT–PCR analysis and also by metabolic activity measurements. In particular, the PAN HF membranes showed ideal growth culture conditions, guaranteeing adequate levels of metabolic features. Primary hippocampal cells cultured on PAN HF membranes were able to recreate in vitro a 3D neural tissue-like structure that, mimicking the hippocampal tissue, could be used as a tool for the study of natural and pathological neurobiological events.

Flat and tubular membrane systems for the reconstruction of hippocampal neuronal network

Sabrina Morelli;Antonella Piscioneri;Simona Salerno;Franco Tasselli;Enrico Drioli;Loredana De Bartolo
2012

Abstract

The selection of appropriate biomaterials that promote cellular adhesion and growth is particularly important for the in vitro reconstruction of neuronal network. This study focused on the development of new polymeric membranes in flat and tubular (hollow-fibre) configurations as novel biomaterials for neuronal outgrowth. Two membrane systems constituted by modified polyetheretherketone (PEEK-WC) and polyacrylonitrile (PAN) membranes were developed and used for the culture of hamster hippocampal neurons. We demonstrated that all investigated membranes supported the adhesion and growth of hippocampal neurons enhancing neuronal differentiation and neurite alignment. The differences in cell behaviours between cells cultured on flat and hollow-fibre (HF) membranes were highlighted by the quantitative analysis of neuronal marker fluorescence intensity, morphometric analysis, RT–PCR analysis and also by metabolic activity measurements. In particular, the PAN HF membranes showed ideal growth culture conditions, guaranteeing adequate levels of metabolic features. Primary hippocampal cells cultured on PAN HF membranes were able to recreate in vitro a 3D neural tissue-like structure that, mimicking the hippocampal tissue, could be used as a tool for the study of natural and pathological neurobiological events.
2012
Istituto per la Tecnologia delle Membrane - ITM
hippocampal neurons
membranes
hollow fibre
neuronal network
neuronal tissue engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/28984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact