We address the problem of quantification, a supervised learning task whose goal is, given a class, to estimate the relative frequency (or prevalence) of the class in a dataset of unlabelled items. Quantification has several applications in data and text mining, such as estimating the prevalence of positive reviews in a set of reviews of a given product, or estimating the prevalence of a given support issue in a dataset of transcripts of phone calls to tech support. So far, quantification has been addressed by learning a general-purpose classifier, counting the unlabelled items which have been assigned the class, and tuning the obtained counts according to some heuristics. In this paper we depart from the tradition of using general-purpose classifiers, and use instead a supervised learning model for structured prediction, capable of generating classifiers directly optimized for the (multivariate and non-linear) function used for evaluating quantification accuracy. The experiments that we have run on 5500 binary high-dimensional datasets (averaging more than 14,000 documents each) show that this method is more accurate, more stable, and more efficient than existing, state-of-the-art quantification methods.

Structured prediction for quantification

Esuli A;Sebastiani F
2015

Abstract

We address the problem of quantification, a supervised learning task whose goal is, given a class, to estimate the relative frequency (or prevalence) of the class in a dataset of unlabelled items. Quantification has several applications in data and text mining, such as estimating the prevalence of positive reviews in a set of reviews of a given product, or estimating the prevalence of a given support issue in a dataset of transcripts of phone calls to tech support. So far, quantification has been addressed by learning a general-purpose classifier, counting the unlabelled items which have been assigned the class, and tuning the obtained counts according to some heuristics. In this paper we depart from the tradition of using general-purpose classifiers, and use instead a supervised learning model for structured prediction, capable of generating classifiers directly optimized for the (multivariate and non-linear) function used for evaluating quantification accuracy. The experiments that we have run on 5500 binary high-dimensional datasets (averaging more than 14,000 documents each) show that this method is more accurate, more stable, and more efficient than existing, state-of-the-art quantification methods.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Quantification
Structured output prediction
File in questo prodotto:
File Dimensione Formato  
prod_327137-doc_99694.pdf

accesso aperto

Descrizione: Structured prediction for quantification
Tipologia: Documento in Pre-print
Dimensione 409.95 kB
Formato Adobe PDF
409.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/289850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact