We propose a method to associate a differentiable Riemannian manifold to a generic many-degrees-of-freedom discrete system which is not described by a Hamiltonian function. Then, in analogy with classical statistical mechanics, we introduce an entropy as the logarithm of the volume of the manifold. The geometric entropy so defined is able to detect a paradigmatic phase transition occurring in random graphs theory: the appearance of the "giant component" according to the Erdos-Renyi theorem. Copyright (C) EPLA, 2015

A geometric entropy detecting the Erdos-Renyi phase transition

Franzosi Roberto;
2015

Abstract

We propose a method to associate a differentiable Riemannian manifold to a generic many-degrees-of-freedom discrete system which is not described by a Hamiltonian function. Then, in analogy with classical statistical mechanics, we introduce an entropy as the logarithm of the volume of the manifold. The geometric entropy so defined is able to detect a paradigmatic phase transition occurring in random graphs theory: the appearance of the "giant component" according to the Erdos-Renyi theorem. Copyright (C) EPLA, 2015
2015
Istituto Nazionale di Ottica - INO
Complexity
Networks
Entropy
File in questo prodotto:
File Dimensione Formato  
prod_334151-doc_103988.pdf

solo utenti autorizzati

Descrizione: A geometric entropy detecting the Erdös-Rényi phase transition
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 494.19 kB
Formato Adobe PDF
494.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/292159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact