The induction of a variety of drug-metabolizing enzymes by six anthraquinones (AQs) has been investigated in the liver and small intestine of rat. In the liver, the intragastric administration for 3 days of 100 mg/kg g,10-anthraquinone (9,10-AQ), 1-hydroxy-AQ, 1,4-dihydroxy-AQ, but not 1,2-dihydroxy-AQ and 2-carboxy-AQ, resulted in a significant induction of the UDP-GT, DT-diaphorase, P450 1A-linked monooxygenase activities and in particular the methoxyresorufin-O-demethylase (MEROD), an activity dependent on P450 1A2. Immunoblot analysis indicated that 1-hydroxy-AQ and 1,4-dihydroxy-AQ induced P450 1A2 but not 1A1 and 9,10-AQ induced both P4501A2 and P4502B. Northern blot analysis, using a cDNA probe for CYP 1A1 and CYP 1A2, confirmed that the AQs induce CYP 1A2 but not 1A1 mRNA. In the mucosa of small intestine, none of the above-mentioned enzymatic activities were enhanced following AQ administration. The induction mechanism of the hepatic enzymes by AQs is not known and it deserves a further study as it might be independent from the activation of the Ah-receptor as reported for other tricyclic compounds. The results from inhibition experiments showed that the hydroxylated AQs were strong inhibitors of P450 1A2-dependent monooxygenases. This suggests that long-term ingestion of certain AQs, may affect the toxicity of other components present in the diet through the hepatic induction or inhibition of P450 1A2. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.
Heterogenous effects of anthraquinones on drug-metabolizing enzymes in the liver and small intestine of rat
Longo V;
2000
Abstract
The induction of a variety of drug-metabolizing enzymes by six anthraquinones (AQs) has been investigated in the liver and small intestine of rat. In the liver, the intragastric administration for 3 days of 100 mg/kg g,10-anthraquinone (9,10-AQ), 1-hydroxy-AQ, 1,4-dihydroxy-AQ, but not 1,2-dihydroxy-AQ and 2-carboxy-AQ, resulted in a significant induction of the UDP-GT, DT-diaphorase, P450 1A-linked monooxygenase activities and in particular the methoxyresorufin-O-demethylase (MEROD), an activity dependent on P450 1A2. Immunoblot analysis indicated that 1-hydroxy-AQ and 1,4-dihydroxy-AQ induced P450 1A2 but not 1A1 and 9,10-AQ induced both P4501A2 and P4502B. Northern blot analysis, using a cDNA probe for CYP 1A1 and CYP 1A2, confirmed that the AQs induce CYP 1A2 but not 1A1 mRNA. In the mucosa of small intestine, none of the above-mentioned enzymatic activities were enhanced following AQ administration. The induction mechanism of the hepatic enzymes by AQs is not known and it deserves a further study as it might be independent from the activation of the Ah-receptor as reported for other tricyclic compounds. The results from inhibition experiments showed that the hydroxylated AQs were strong inhibitors of P450 1A2-dependent monooxygenases. This suggests that long-term ingestion of certain AQs, may affect the toxicity of other components present in the diet through the hepatic induction or inhibition of P450 1A2. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.