Advances in nuclear medical imaging are based on the improvements of the detector?s performance. Generally the research is focussed on the spatial resolution improvement. However, another important parameter is the acquisition time that can significantly affect performance in some clinical investigation (e.g. first-pass cardiac studies). At present, there are several clinical imaging systems which are able to solve these diagnostic requirements, such as the D-SPECT Cardiac Imaging System (Spectrum Dynamics) or the Nucline Cardiodesk Medical Imaging System (Mediso). Actually, these solutions are organ-specific dedicated systems, while it would be preferable having general purpose planar detectors with high counting rate. Our group has recently introduced the use of scintillation matrices whose size is equal to the overall area of a position sensitive photomultiplier tube (PSPMT) in order to design a modular gamma camera. This study allowed optimising the overall pixel identification by improving and controlling the light collection efficiency of each PSPMT. Although we achieved a solution for the problems about the dead area at the junction of the PSPMTs when they are set side by side. In this paper, we propose a modular gamma camera design as the basis to build large area detectors. The modular detector design allows us to achieve better counting performance. In this approach, each module that is made of one or more PSPMTs, can actually acquire data independently and simultaneously, increasing the overall detection efficiency. To verify the improvement in count rate capability we have built two detectors with a field of view of ~5×5cm2~5×5cm2, by using four R8900-C12 PSPMTs (Hamamatsu Photonics K.K.). Each PSPMT was coupled to a dedicated discrete scintillation structure designed to obtain a good homogeneity, high imaging performance and high efficiency. One of the detectors was designed as a standard gamma camera, while the other was composed by four independent modules. Then, we compared the counting rate measurements demonstrating the validity of the modular approach and opening the way to build larger area devices.

High count rate gamma camera with independent modules

R Massari;C Campisi;A Soluri
2015

Abstract

Advances in nuclear medical imaging are based on the improvements of the detector?s performance. Generally the research is focussed on the spatial resolution improvement. However, another important parameter is the acquisition time that can significantly affect performance in some clinical investigation (e.g. first-pass cardiac studies). At present, there are several clinical imaging systems which are able to solve these diagnostic requirements, such as the D-SPECT Cardiac Imaging System (Spectrum Dynamics) or the Nucline Cardiodesk Medical Imaging System (Mediso). Actually, these solutions are organ-specific dedicated systems, while it would be preferable having general purpose planar detectors with high counting rate. Our group has recently introduced the use of scintillation matrices whose size is equal to the overall area of a position sensitive photomultiplier tube (PSPMT) in order to design a modular gamma camera. This study allowed optimising the overall pixel identification by improving and controlling the light collection efficiency of each PSPMT. Although we achieved a solution for the problems about the dead area at the junction of the PSPMTs when they are set side by side. In this paper, we propose a modular gamma camera design as the basis to build large area detectors. The modular detector design allows us to achieve better counting performance. In this approach, each module that is made of one or more PSPMTs, can actually acquire data independently and simultaneously, increasing the overall detection efficiency. To verify the improvement in count rate capability we have built two detectors with a field of view of ~5×5cm2~5×5cm2, by using four R8900-C12 PSPMTs (Hamamatsu Photonics K.K.). Each PSPMT was coupled to a dedicated discrete scintillation structure designed to obtain a good homogeneity, high imaging performance and high efficiency. One of the detectors was designed as a standard gamma camera, while the other was composed by four independent modules. Then, we compared the counting rate measurements demonstrating the validity of the modular approach and opening the way to build larger area devices.
2015
Istituto di Biochimica e Biologia Cellulare - IBBC
Position Sensitive Photomultiplier Tube
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/293068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact