An adequate folate intake minimizes the risk of various cancers and other disorders such as vascular diseases and neural tube defects. However, meta-analyses revealed difficulties in supporting the relationship between folate intake and the risk of cancer. Interestingly, there have been no reports to date on the potential ability of folate to modulate xenobiotic metabolising enzymes (XMEs), the inhibition of bioactivating Phase-I XMEs and/or induction of detoxifying Phase-II XMEs being one of the most evoked cancer chemopreventive strategies. Here, several CYP-dependent oxidations were studied in liver sub-cellular preparations from Sprague-Dawley rats receiving rodent chow supplemented with folic acid daily, for 1 or 2 consecutive months. Using either specific substrates as probes of different CYP isoforms or the regio- and stereo-selective metabolism of testosterone as a multibiomarker, we found that folic acid markedly inactivated most of the Phase-I XME analysed; up to 54% for the CYP1A1-linked deethylation of ethoxyresorufin in males, and up to 86% for the testosterone 2?-hydroxylase (CYP2C11) in females, after 2 months treatment. The Phase-II marker glutathione S-transferase significantly increased (~107%) after 1 month of supplementation in females only. These changes, if reproduced in humans might have public health implications. These data suggest caution in performing folate chemoprevention trials before its overall toxicological characterization has been fully addressed. © 2007 Elsevier B.V. All rights reserved.
Perturbation of rat hepatic metabolising enzymes by folic acid supplementation
Longo V;
2008
Abstract
An adequate folate intake minimizes the risk of various cancers and other disorders such as vascular diseases and neural tube defects. However, meta-analyses revealed difficulties in supporting the relationship between folate intake and the risk of cancer. Interestingly, there have been no reports to date on the potential ability of folate to modulate xenobiotic metabolising enzymes (XMEs), the inhibition of bioactivating Phase-I XMEs and/or induction of detoxifying Phase-II XMEs being one of the most evoked cancer chemopreventive strategies. Here, several CYP-dependent oxidations were studied in liver sub-cellular preparations from Sprague-Dawley rats receiving rodent chow supplemented with folic acid daily, for 1 or 2 consecutive months. Using either specific substrates as probes of different CYP isoforms or the regio- and stereo-selective metabolism of testosterone as a multibiomarker, we found that folic acid markedly inactivated most of the Phase-I XME analysed; up to 54% for the CYP1A1-linked deethylation of ethoxyresorufin in males, and up to 86% for the testosterone 2?-hydroxylase (CYP2C11) in females, after 2 months treatment. The Phase-II marker glutathione S-transferase significantly increased (~107%) after 1 month of supplementation in females only. These changes, if reproduced in humans might have public health implications. These data suggest caution in performing folate chemoprevention trials before its overall toxicological characterization has been fully addressed. © 2007 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.