A number of Variable Valve Actuators (VVA) has been recently proposed to improve the performances and the part load efficiency of spark ignition engines. Due to their peculiarity, these systems work with different strategies (late or early inlet valve closing, reduced lift, etc.). The shape and the timing of the valve lift affect not only the pumping losses, but also air motion inside the cylinder. That influences mixture formation and combustion evolution of Direct Injection Spark Ignition (DISI) engines. The present paper compares the performances of different VVA systems with the aid of a 1D code for the simulation of the inlet and of the exhaust phases, and of a fluid-dynamic 3D code to evaluate mixing phenomena inside the cylinder.
The effect of valve lift shape and timing on air motion and mixture formation of DISI engines adopting different VVA actuators
Diana S;Giglio V;Iorio B;Police G
2002
Abstract
A number of Variable Valve Actuators (VVA) has been recently proposed to improve the performances and the part load efficiency of spark ignition engines. Due to their peculiarity, these systems work with different strategies (late or early inlet valve closing, reduced lift, etc.). The shape and the timing of the valve lift affect not only the pumping losses, but also air motion inside the cylinder. That influences mixture formation and combustion evolution of Direct Injection Spark Ignition (DISI) engines. The present paper compares the performances of different VVA systems with the aid of a 1D code for the simulation of the inlet and of the exhaust phases, and of a fluid-dynamic 3D code to evaluate mixing phenomena inside the cylinder.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.