We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr non-linearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. (C) 2013 Elsevier Inc. All rights reserved.

Optical analogue of relativistic Dirac solitons in binary waveguide arrays

Longhi Stefano;
2014

Abstract

We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr non-linearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. (C) 2013 Elsevier Inc. All rights reserved.
2014
Binary waveguide array
Kerr nonlinearity
Dirac equation
Dirac soliton
Quantum nonlinear effect
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/297527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 55
social impact