Open many-body quantum systems have attracted renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. The physical relevance in many-particle bosonic systems lies in the realization of counter-intuitive transport phenomena and the stochastic preparation of highly stable and entangled many-body states due to engineered dissipation. We review a variety of approaches to describe an open system of interacting ultracold bosons which can be modeled by a tight-binding Hubbard approximation. Going along with the presentation of theoretical and numerical techniques, we present a series of results in diverse setups, based on a master equation description of the dissipative dynamics of ultracold bosons in a one-dimensional lattice. Next to by now standard numerical methods such as the exact unravelling of the master equation by quantum jumps for small systems and beyond mean-field expansions for larger ones, we present a coherent-state path integral formalism based on Feynman-Vernon theory applied to a many-body context.
The dissipative Bose-Hubbard model
P Buonsante;A Vezzani;
2015
Abstract
Open many-body quantum systems have attracted renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. The physical relevance in many-particle bosonic systems lies in the realization of counter-intuitive transport phenomena and the stochastic preparation of highly stable and entangled many-body states due to engineered dissipation. We review a variety of approaches to describe an open system of interacting ultracold bosons which can be modeled by a tight-binding Hubbard approximation. Going along with the presentation of theoretical and numerical techniques, we present a series of results in diverse setups, based on a master equation description of the dissipative dynamics of ultracold bosons in a one-dimensional lattice. Next to by now standard numerical methods such as the exact unravelling of the master equation by quantum jumps for small systems and beyond mean-field expansions for larger ones, we present a coherent-state path integral formalism based on Feynman-Vernon theory applied to a many-body context.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.