The concepts of separability, entanglement, spin squeezing, and the Heisenberg limit are central in the theory of quantum-enhanced metrology. In the current literature, these are well established only in the case of linear interferometers operating with input quantum states of a known fixed number of particles. This manuscript generalizes these concepts and extends the quantum phase estimation theory by taking into account classical and quantum fluctuations of the particle number. Our analysis concerns most of the current experiments on precision measurements where the number of particles is known only on average. © 2010 The American Physical Society.

Entanglement and sensitivity in precision measurements with states of a fluctuating number of particles

Smerzi A
2010

Abstract

The concepts of separability, entanglement, spin squeezing, and the Heisenberg limit are central in the theory of quantum-enhanced metrology. In the current literature, these are well established only in the case of linear interferometers operating with input quantum states of a known fixed number of particles. This manuscript generalizes these concepts and extends the quantum phase estimation theory by taking into account classical and quantum fluctuations of the particle number. Our analysis concerns most of the current experiments on precision measurements where the number of particles is known only on average. © 2010 The American Physical Society.
2010
Quantum Metrology
Quantum Coherence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/301325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 85
social impact