Resistive switching devices were at first conceived to be used in memory applications. Recently, they have also been studied as artificial synapses for neuromorphic applications. Therefore, lots of efforts are currently devoted to optimise both materials and programming techniques to design a device able to emulate the behaviour of biological synapses, i.e. able to gradually increase and decrease its conductance when proper electrical signals are applied. In this paper, an Al:HfO2 based memristor is presented as a suitable device as an artificial synapse in future neuromorphic circuits. A train of identical programming pulses was chosen because of its ease of implementation as an efficient and simple programming algorithm to emulate the strength change observed in biological synapses. With this algorithm we demonstrate that the conductance of the device can be both gradually increased and gradually decreased, provided an accurate choice of pulse amplitude and time width is made.

Synaptic potentiation and depression in Al:HfO2-based memristor

Covi E;Brivio S;Fanciulli M;Spiga S
2015

Abstract

Resistive switching devices were at first conceived to be used in memory applications. Recently, they have also been studied as artificial synapses for neuromorphic applications. Therefore, lots of efforts are currently devoted to optimise both materials and programming techniques to design a device able to emulate the behaviour of biological synapses, i.e. able to gradually increase and decrease its conductance when proper electrical signals are applied. In this paper, an Al:HfO2 based memristor is presented as a suitable device as an artificial synapse in future neuromorphic circuits. A train of identical programming pulses was chosen because of its ease of implementation as an efficient and simple programming algorithm to emulate the strength change observed in biological synapses. With this algorithm we demonstrate that the conductance of the device can be both gradually increased and gradually decreased, provided an accurate choice of pulse amplitude and time width is made.
2015
Istituto per la Microelettronica e Microsistemi - IMM
HfO2
Resistive switching
Artificial synapse
Synaptic plasticity
Memristive device
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? ND
social impact