Several studies have shown how to approximately predict public opinion, such as in political elections, by analyzing user activities in blogging platforms and on-line social networks. The task is challenging for several reasons. Sample bias and automatic understanding of textual content are two of several non trivial issues. In this work we study how Twitter can provide some interesting insights concerning the primary elections of an Italian political party. State-of-the-art approaches rely on indicators based on tweet and user volumes, often including sentiment analysis. We investigate how to exploit and improve those indicators in order to reduce the bias of the Twitter users sample. We propose novel indicators and a novel content-based method. Furthermore, we study how a machine learning approach can learn correction factors for those indicators. Experimental results on Twitter data support the validity of the proposed methods and their improvement over the state of the art.

Electoral predictions with Twitter: a machine-learning approach

Lucchese C;Orlando S;Perego R
2015

Abstract

Several studies have shown how to approximately predict public opinion, such as in political elections, by analyzing user activities in blogging platforms and on-line social networks. The task is challenging for several reasons. Sample bias and automatic understanding of textual content are two of several non trivial issues. In this work we study how Twitter can provide some interesting insights concerning the primary elections of an Italian political party. State-of-the-art approaches rely on indicators based on tweet and user volumes, often including sentiment analysis. We investigate how to exploit and improve those indicators in order to reduce the bias of the Twitter users sample. We propose novel indicators and a novel content-based method. Furthermore, we study how a machine learning approach can learn correction factors for those indicators. Experimental results on Twitter data support the validity of the proposed methods and their improvement over the state of the art.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Twitter analysis
data mining twitter political
File in questo prodotto:
File Dimensione Formato  
prod_337329-doc_156728.pdf

accesso aperto

Descrizione: Electoral predictions with Twitter: a machine-learning approach
Tipologia: Versione Editoriale (PDF)
Dimensione 5.78 MB
Formato Adobe PDF
5.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact