Single-Walled Carbon Nanotubes (SWCNTs) possess a wealth of exceptional structural, mechanical and electronic properties. These have made them potentially useful for applications in nanotube-reinforced materials, nanoelectronic devices, field emitters, probe tips for SPM, as well as for sensors, biosensors, and actuators. However, manipulation and processing of SWCNTs has been limited by their insolubility in most common solvents, although some dissolution has recently been obtained. Their chemical modification might pave the way to many useful applications, including the preparation of composite materials or the immobilization of biological molecules as enzymes (i.e., for biosensors and electrochemical sensors). Attachment of oxygen-containing functional groups (i.e., carboxy groups, carbonyl groups, hydroxy groups, etc.) on the surface of the carbon nanotubes could be achieved using different pretreatments of the nanostructured material. These involved (a) chemical and physical procedures; and (b) electrochemical functionalization. Different attempts at sidewall modification have been hampered by the presence of significant contaminants as graphitic and amorphous carbon or have required solubilization via chemical reactions on the ends of cut nanotubes. A more accommodating and direct approach to functionalize nanotubes is therefore required. We report here the sidewall functionalization of purified SWCNTs, obtained by different approaches and finally, we can discuss possible applications of functionalized SWCNTs in the sensing area

Functionalization and dissoplution of single-walled carbon nanotubes by chemical-physical and electrochemical treatments

A Curulli;S Nunziante Cesaro;
2006

Abstract

Single-Walled Carbon Nanotubes (SWCNTs) possess a wealth of exceptional structural, mechanical and electronic properties. These have made them potentially useful for applications in nanotube-reinforced materials, nanoelectronic devices, field emitters, probe tips for SPM, as well as for sensors, biosensors, and actuators. However, manipulation and processing of SWCNTs has been limited by their insolubility in most common solvents, although some dissolution has recently been obtained. Their chemical modification might pave the way to many useful applications, including the preparation of composite materials or the immobilization of biological molecules as enzymes (i.e., for biosensors and electrochemical sensors). Attachment of oxygen-containing functional groups (i.e., carboxy groups, carbonyl groups, hydroxy groups, etc.) on the surface of the carbon nanotubes could be achieved using different pretreatments of the nanostructured material. These involved (a) chemical and physical procedures; and (b) electrochemical functionalization. Different attempts at sidewall modification have been hampered by the presence of significant contaminants as graphitic and amorphous carbon or have required solubilization via chemical reactions on the ends of cut nanotubes. A more accommodating and direct approach to functionalize nanotubes is therefore required. We report here the sidewall functionalization of purified SWCNTs, obtained by different approaches and finally, we can discuss possible applications of functionalized SWCNTs in the sensing area
2006
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
carbon nanotubes
modified electrodes
SWCNTs
nanomaterials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/30622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact