Nonlinear optical microscopy is a relatively new and rapidly growing field of optical engineering, where Ti:sapphire ultrafast laser sources and technologies are finding a wide application. Diagnostic techniques addressed to this kind of application have been widely developed in the last few years. Research efforts have been focused on the evaluation and eventual correction of laser pulse duration widening due to group velocity dispersion of microscope optics, and devices have been specially designed to perform second-order autocorrelation measurements at the objective focal plane. In the present work, innovative, simple setups and procedures are reported that make the best use of all the facilities and characteristics of the microscope itself, so that only a few optical components are needed to temporal characterize the laser pulse at the specimen plane.
Autocorrelator designs for nonlinear optical microscopy
Quercioli F;Tiribilli B;Vassalli M;Sbrana F
2006
Abstract
Nonlinear optical microscopy is a relatively new and rapidly growing field of optical engineering, where Ti:sapphire ultrafast laser sources and technologies are finding a wide application. Diagnostic techniques addressed to this kind of application have been widely developed in the last few years. Research efforts have been focused on the evaluation and eventual correction of laser pulse duration widening due to group velocity dispersion of microscope optics, and devices have been specially designed to perform second-order autocorrelation measurements at the objective focal plane. In the present work, innovative, simple setups and procedures are reported that make the best use of all the facilities and characteristics of the microscope itself, so that only a few optical components are needed to temporal characterize the laser pulse at the specimen plane.File | Dimensione | Formato | |
---|---|---|---|
prod_57031-doc_15610.pdf
solo utenti autorizzati
Descrizione: Autocorrelator designs for nonlinear optical microscopy
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
714.9 kB
Formato
Adobe PDF
|
714.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.