We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection-diffusion partial differential equations with separable coefficients, dominant convection and rectangular or parallelepipedal domain. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For the considered setting, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology.

Matrix-equation-based strategies for convection-diffusion equations

V Simoncini
2016

Abstract

We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection-diffusion partial differential equations with separable coefficients, dominant convection and rectangular or parallelepipedal domain. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For the considered setting, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Convection-diffusion equations
Iterative solvers
Matrix equations
Preconditioning
File in questo prodotto:
File Dimensione Formato  
prod_348215-doc_109956.pdf

accesso aperto

Descrizione: Matrix-equation-based strategies for convection-diffusion equations
Tipologia: Versione Editoriale (PDF)
Dimensione 573.78 kB
Formato Adobe PDF
573.78 kB Adobe PDF Visualizza/Apri
prod_348215-doc_155228.pdf

solo utenti autorizzati

Descrizione: Matrix-equation-based strategies for convection-diffusion equations
Tipologia: Versione Editoriale (PDF)
Dimensione 409.59 kB
Formato Adobe PDF
409.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/309789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 44
social impact