We consider the numerical approximation of $f({\cal A})b$ where $b\in{\mathbb R}^{N}$ and $\cal A$ is the sum of Kronecker products, that is ${\cal A}=M_2 \otimes I + I \otimes M_1\in{\mathbb R}^{N\times N}$. Here $f$ is a regular function such that $f({\cal A})$ is well defined. We derive a computational strategy that significantly lowers the memory requirements and computational efforts of the standard approximations, with special emphasis on the exponential function, for which the new procedure becomes particularly advantageous. Our findings are illustrated by numerical experiments with typical functions used in applications.

Approximation of functions of large matrices with Kronecker structure

V Simoncini
2017

Abstract

We consider the numerical approximation of $f({\cal A})b$ where $b\in{\mathbb R}^{N}$ and $\cal A$ is the sum of Kronecker products, that is ${\cal A}=M_2 \otimes I + I \otimes M_1\in{\mathbb R}^{N\times N}$. Here $f$ is a regular function such that $f({\cal A})$ is well defined. We derive a computational strategy that significantly lowers the memory requirements and computational efforts of the standard approximations, with special emphasis on the exponential function, for which the new procedure becomes particularly advantageous. Our findings are illustrated by numerical experiments with typical functions used in applications.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
matrix functions
sparse matrices
Krylov methods
Kronecker structure
File in questo prodotto:
File Dimensione Formato  
prod_348234-doc_109973.pdf

accesso aperto

Descrizione: Approximation of functions of large matrices with Kronecker structure
Tipologia: Versione Editoriale (PDF)
Dimensione 391.98 kB
Formato Adobe PDF
391.98 kB Adobe PDF Visualizza/Apri
prod_348234-doc_155160.pdf

solo utenti autorizzati

Descrizione: Approximation of functions of large matrices with Kronecker structure
Tipologia: Versione Editoriale (PDF)
Dimensione 507.78 kB
Formato Adobe PDF
507.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/310214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact