The RET (REarranged during Transfection) receptor tyrosine kinase is targeted by oncogenic rearrangements in thyroid and lung adenocarcinoma. Recently, a RET (exon 12) rearrangement with FGFR1OP [fibroblast growth factor receptor 1 (FGFR1) oncogene partner] (exon 12) was identified in one chronic myelomonocytic leukemia (CMML) patient. We report the molecular cloning and functional characterization of a novel FGFR1OP (exon 11)-RET (exon 11) gene fusion event (named FGFR1OP-RET), mediated by a reciprocal translocation t(6; 10)(q27; q11), in a patient affected by primary myelofibrosis (PMF) with secondary acute myeloid leukemia (AML). The FGFR1OP-RET fusion protein displayed constitutive tyrosine kinase and transforming activity in NIH3T3 fibroblasts, and induced IL3-independent growth and activation of PI3K/STAT signaling in hematopoietic Ba/F3 cells. FGFR1OP-RET supported cytokine-independent growth, protection from stress and enhanced self-renewal of primary murine hematopoietic progenitor and stem cells invitro. Invivo, FGFR1OP-RET caused a spectrum of disease phenotypes, with >50% of mice showing a fatal myeloproliferative disorder (MPD). Other phenotypes were leukemia transplantable in secondary recipients, dramatic expansion of the mast cell lineage, and reduction of repopulating activity upon lethal irradiation. In conclusion, FGFR1OP-RET chimeric oncogenes are endowed with leukemogenic potential and associated to myeloid neoplasms (CMML and PMF/AML). © 2013 Federation of European Biochemical Societies.
Functional characterization of a novel FGFR1OP-RET rearrangement in hematopoietic malignancies
Carlomagno F;Santoro M;
2014
Abstract
The RET (REarranged during Transfection) receptor tyrosine kinase is targeted by oncogenic rearrangements in thyroid and lung adenocarcinoma. Recently, a RET (exon 12) rearrangement with FGFR1OP [fibroblast growth factor receptor 1 (FGFR1) oncogene partner] (exon 12) was identified in one chronic myelomonocytic leukemia (CMML) patient. We report the molecular cloning and functional characterization of a novel FGFR1OP (exon 11)-RET (exon 11) gene fusion event (named FGFR1OP-RET), mediated by a reciprocal translocation t(6; 10)(q27; q11), in a patient affected by primary myelofibrosis (PMF) with secondary acute myeloid leukemia (AML). The FGFR1OP-RET fusion protein displayed constitutive tyrosine kinase and transforming activity in NIH3T3 fibroblasts, and induced IL3-independent growth and activation of PI3K/STAT signaling in hematopoietic Ba/F3 cells. FGFR1OP-RET supported cytokine-independent growth, protection from stress and enhanced self-renewal of primary murine hematopoietic progenitor and stem cells invitro. Invivo, FGFR1OP-RET caused a spectrum of disease phenotypes, with >50% of mice showing a fatal myeloproliferative disorder (MPD). Other phenotypes were leukemia transplantable in secondary recipients, dramatic expansion of the mast cell lineage, and reduction of repopulating activity upon lethal irradiation. In conclusion, FGFR1OP-RET chimeric oncogenes are endowed with leukemogenic potential and associated to myeloid neoplasms (CMML and PMF/AML). © 2013 Federation of European Biochemical Societies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.