The activation of the Deep Convolutional Neural Networks hidden layers can be successfully used as features, often referred as Deep Features, in generic visual similarity search tasks. Recently scientists have shown that permutation-based methods offer very good performance in indexing and supporting approximate similarity search on large database of objects. Permutation-based approaches represent metric objects as sequences (permutations) of reference objects, chosen from a predefined set of data. However, associating objects with permutations might have a high cost due to the distance calculation between the data objects and the reference objects. In this work, we propose a new approach to generate permutations at a very low computational cost, when objects to be indexed are Deep Features. We show that the permutations generated using the proposed method are more effective than those obtained using pivot selection criteria specifically developed for permutation-based methods.
Deep permutations: Deep convolutional neural networks and permutation-based indexing
Amato G;Falchi F;Gennaro C;Vadicamo L
2016
Abstract
The activation of the Deep Convolutional Neural Networks hidden layers can be successfully used as features, often referred as Deep Features, in generic visual similarity search tasks. Recently scientists have shown that permutation-based methods offer very good performance in indexing and supporting approximate similarity search on large database of objects. Permutation-based approaches represent metric objects as sequences (permutations) of reference objects, chosen from a predefined set of data. However, associating objects with permutations might have a high cost due to the distance calculation between the data objects and the reference objects. In this work, we propose a new approach to generate permutations at a very low computational cost, when objects to be indexed are Deep Features. We show that the permutations generated using the proposed method are more effective than those obtained using pivot selection criteria specifically developed for permutation-based methods.File | Dimensione | Formato | |
---|---|---|---|
prod_363064-doc_119669.pdf
solo utenti autorizzati
Descrizione: Deep permutations: Deep convolutional neural networks and permutation-based indexing
Tipologia:
Versione Editoriale (PDF)
Dimensione
322.53 kB
Formato
Adobe PDF
|
322.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_363064-doc_159986.pdf
accesso aperto
Descrizione: Deep permutations: Deep convolutional neural networks and permutation-based indexing
Tipologia:
Versione Editoriale (PDF)
Dimensione
276.28 kB
Formato
Adobe PDF
|
276.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.