Food security in East Africa region essentially depends on the stability of rain-fed crops farming, which renders its society vulnerable to climatic fluctuations. These ones in Africa are most widely and directly related to rainfall. In this study, the relation between recent spatial rainfall variability and vegetation dynamics has been investigated for East Africa territories. Satellite raster products SPOT-4 Vegetation 1 km resolution (Saint, 1995) and RFE (rainfall estimates) from Famine Early Warning Systems Network (FEWS NET) are used. The survey is carried out at administrative level scale using 10-day summaries extracted from raster data for each spatial area unit thanks to specific polygonal layers. Time series covers two different periods: 1996-2009 for rainfall estimates and 1999-2009 for NDVI. The first step of the analysis has been to build for each administrative unit a coherent set of data, along the time series, suitable to be processed with state-of-art statistical tools. The analysis is based on the assumption that every structural break in vegetation dynamics could be caused by two alternative/complementary causes, namely: (i) modifications in crop farming systems (adaptation strategy) related to eventual break-shift in rainfall regime and/or (ii) other socio-economic factors. BFAST (Verbesselt et al, 2010) R package are employed to lead a comprehensive breakpoint analysis on 10-day RFE (spatial mean and standard deviation) and 10-day NDVI ones (spatial mean, mode and standard deviation). The cross-viewing of the years where significant breaks have occurred, throughout opportune GIS layering, provides an explorative interpretation of spatial climate/vegetation dynamics in the whole area. Moreover, the spatial and temporal pattern of ecosystem dynamics in response to climatic variability has been investigated using wavelet coherency by SOWAS R package (Maraun, 2007). The wavelet coherency (WCOH) is a normalized time and scale resolved measure for the relationship between two time series (Maraun and Kurths, 2004). This kind of multi-scale temporal investigation provides an explanation of break detected in time series, confirming or not their climatic linkage; results of the analysis are shown. Finally, in order to support the dissemination and sharing of information, interactive vegetation maps have been implemented with Google Earth mash-up. The maturity of Web-based GIS enables the generation of thematic maps dynamically and efficiently, with a thin/thick client or hybrid architectures. This could be a great support for the understanding environmental phenomena.

Recent structural change in remote sensing data time series linked to farm management in Horn of Africa (1999 - 2009)

Crisci A;Vignaroli P;Genesio L;Grasso V;Bacci M;Tarchiani V;Capecchi V
2011

Abstract

Food security in East Africa region essentially depends on the stability of rain-fed crops farming, which renders its society vulnerable to climatic fluctuations. These ones in Africa are most widely and directly related to rainfall. In this study, the relation between recent spatial rainfall variability and vegetation dynamics has been investigated for East Africa territories. Satellite raster products SPOT-4 Vegetation 1 km resolution (Saint, 1995) and RFE (rainfall estimates) from Famine Early Warning Systems Network (FEWS NET) are used. The survey is carried out at administrative level scale using 10-day summaries extracted from raster data for each spatial area unit thanks to specific polygonal layers. Time series covers two different periods: 1996-2009 for rainfall estimates and 1999-2009 for NDVI. The first step of the analysis has been to build for each administrative unit a coherent set of data, along the time series, suitable to be processed with state-of-art statistical tools. The analysis is based on the assumption that every structural break in vegetation dynamics could be caused by two alternative/complementary causes, namely: (i) modifications in crop farming systems (adaptation strategy) related to eventual break-shift in rainfall regime and/or (ii) other socio-economic factors. BFAST (Verbesselt et al, 2010) R package are employed to lead a comprehensive breakpoint analysis on 10-day RFE (spatial mean and standard deviation) and 10-day NDVI ones (spatial mean, mode and standard deviation). The cross-viewing of the years where significant breaks have occurred, throughout opportune GIS layering, provides an explorative interpretation of spatial climate/vegetation dynamics in the whole area. Moreover, the spatial and temporal pattern of ecosystem dynamics in response to climatic variability has been investigated using wavelet coherency by SOWAS R package (Maraun, 2007). The wavelet coherency (WCOH) is a normalized time and scale resolved measure for the relationship between two time series (Maraun and Kurths, 2004). This kind of multi-scale temporal investigation provides an explanation of break detected in time series, confirming or not their climatic linkage; results of the analysis are shown. Finally, in order to support the dissemination and sharing of information, interactive vegetation maps have been implemented with Google Earth mash-up. The maturity of Web-based GIS enables the generation of thematic maps dynamically and efficiently, with a thin/thick client or hybrid architectures. This could be a great support for the understanding environmental phenomena.
2011
Istituto di Biometeorologia - IBIMET - Sede Firenze
978-92-9092-252-0
Food security
spatial rainfall variability
vegetation dynamics
multi-scale temporal analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/315372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact