The objective of this study was to investigate the combined effects of elevated CO2 and cadmium (Cd) treatments on growth, photosynthetic efficiency and phytoremediation ability in Lemna minor L. Plants of L. minor were exposed to different Cd concentrations (0, 1.5, 2.5 and 5 mg L-1 Cd) for periods of 24, 48 and 72 h at ambient (AC) and at elevated (EC) CO2 (350 and 700 ppm, respectively). Cadmium concentration, bioconcentration factor, enzyme activities and thiols content enhanced in plants with the increase of Cd treatments, time of exposure and at both CO2 levels. Glutathione levels increased only at AC. Growth, photosynthetic and chlorophyll fluorescence parameters, and the reduced glutathione to oxidized glutathione ratio declined in plants with increasing exposure time, Cd treatments and at both CO2 levels. Our results suggested that the alleviation of toxicity, at low Cd doses, observed in L. minor grown at EC is dependent on both increased photosynthesis and an enhanced antioxidant capacity.

Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L.

F Pietrini;D Bianconi;A Massacci;MA Iannelli
2016

Abstract

The objective of this study was to investigate the combined effects of elevated CO2 and cadmium (Cd) treatments on growth, photosynthetic efficiency and phytoremediation ability in Lemna minor L. Plants of L. minor were exposed to different Cd concentrations (0, 1.5, 2.5 and 5 mg L-1 Cd) for periods of 24, 48 and 72 h at ambient (AC) and at elevated (EC) CO2 (350 and 700 ppm, respectively). Cadmium concentration, bioconcentration factor, enzyme activities and thiols content enhanced in plants with the increase of Cd treatments, time of exposure and at both CO2 levels. Glutathione levels increased only at AC. Growth, photosynthetic and chlorophyll fluorescence parameters, and the reduced glutathione to oxidized glutathione ratio declined in plants with increasing exposure time, Cd treatments and at both CO2 levels. Our results suggested that the alleviation of toxicity, at low Cd doses, observed in L. minor grown at EC is dependent on both increased photosynthesis and an enhanced antioxidant capacity.
2016
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Duckweed
Chlorophyll fluorescence
Glutathione
Heavy metals
Phytoremediation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/315954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact