Climate change is seriously affecting the cryosphere, in terms, for example of permafrost thaw, alteration of rain/snow ratio, glacier shrinkage. There is concern about the increasing number of rockfalls at high elevation in the last decades. Nevertheless, the impact of climate variables on slope instability at high elevation has not been fully explored yet. In this paper, we investigate 41 rockfalls occurred at high elevation in the Italian Alps between 1997 and 2013 in the absence of an evident trigger. We apply and improve an existing data-based, statistical approach to detect the anomalies of climate parameters (temperature and precipitation) associated to rockfall occurrences. The identified climate anomalies have been related to the spatio-temporal distribution of the events. Rockfalls occurred in association with temperature anomalies in 83 % of our case studies. Temperature represents a key factor contributing to slope failure occurrence in different ways. As expected, warmer temperatures accelerate snowmelt and permafrost thaw; however, surprisingly, negative anomalies are also often associated to slope failures. Interestingly, different regional patterns emerge from the data: higher-than-average temperatures are often associated to rockfalls in the Western Alps, while in the Eastern Alps slope failures are mainly associated to colder-than-average temperatures. The results of this study represent a first step towards the identification of the possible role of climate change in the triggering of slope failures in a mountain environment.

Climate anomalies associated to the occurrence of rockfalls at high-elevation in the Italian Alps

Paranunzio R;Chiarle M;Nigrelli G;Guzzetti F
2016

Abstract

Climate change is seriously affecting the cryosphere, in terms, for example of permafrost thaw, alteration of rain/snow ratio, glacier shrinkage. There is concern about the increasing number of rockfalls at high elevation in the last decades. Nevertheless, the impact of climate variables on slope instability at high elevation has not been fully explored yet. In this paper, we investigate 41 rockfalls occurred at high elevation in the Italian Alps between 1997 and 2013 in the absence of an evident trigger. We apply and improve an existing data-based, statistical approach to detect the anomalies of climate parameters (temperature and precipitation) associated to rockfall occurrences. The identified climate anomalies have been related to the spatio-temporal distribution of the events. Rockfalls occurred in association with temperature anomalies in 83 % of our case studies. Temperature represents a key factor contributing to slope failure occurrence in different ways. As expected, warmer temperatures accelerate snowmelt and permafrost thaw; however, surprisingly, negative anomalies are also often associated to slope failures. Interestingly, different regional patterns emerge from the data: higher-than-average temperatures are often associated to rockfalls in the Western Alps, while in the Eastern Alps slope failures are mainly associated to colder-than-average temperatures. The results of this study represent a first step towards the identification of the possible role of climate change in the triggering of slope failures in a mountain environment.
2016
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Climate anomalies
Rockfalls
High-elevation sites
Italian Alps
File in questo prodotto:
File Dimensione Formato  
prod_353275-doc_169702.pdf

accesso aperto

Descrizione: Climate anomalies associated to the occurrence of rockfalls at high-elevation in the Italian Alps
Tipologia: Versione Editoriale (PDF)
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/316268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact