In this paper we present a framework aimed at detecting emotions and sentiments in a Twitter stream. The approach uses the well-founded Latent Semantic Analysis technique, which can be seen as a bio-insipred cognitive architecture, to induce a semantic space where tweets are mapped and analysed by soft sensors. The measurements of the soft sensors are then used by a visualisation module which exploits glyphs to graphically present them. The result is an interactive map which makes easy the exploration of reactions and opinions in the whole globe regarding tweets retrieved from specific queries.
A Framework Based on Semantic Spaces and Glyphs for Social Sensing on Twitter
Giovanni Pilato;Umberto Maniscalco
2016
Abstract
In this paper we present a framework aimed at detecting emotions and sentiments in a Twitter stream. The approach uses the well-founded Latent Semantic Analysis technique, which can be seen as a bio-insipred cognitive architecture, to induce a semantic space where tweets are mapped and analysed by soft sensors. The measurements of the soft sensors are then used by a visualisation module which exploits glyphs to graphically present them. The result is an interactive map which makes easy the exploration of reactions and opinions in the whole globe regarding tweets retrieved from specific queries.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


