In this paper, we present goal-discovering robotic architecture for intrisically-motivated learning (GRAIL), a four-level architecture that is able to autonomously: 1) discover changes in the environment; 2) form representations of the goals corresponding to those changes; 3) select the goal to pursue on the basis of intrinsic motivations (IMs); 4) select suitable computational resources to achieve the selected goal; 5) monitor the achievement of the selected goal; and 6) self-generate a learning signal when the selected goal is successfully achieved. Building on previous research, GRAIL exploits the power of goals and competence-based IMs to autonomously explore the world and learn different skills that allow the robot to modify the environment. To highlight the features of GRAIL, we implement it in a simulated iCub robot and test the system in four different experimental scenarios where the agent has to perform reaching tasks within a 3-D environment.

GRAIL: a Goal-Discovering Robotic Architecture for Intrinsically-Motivated Learning

Vieri Giuliano Santucci;Gianluca Baldassarre;Marco Mirolli
2016

Abstract

In this paper, we present goal-discovering robotic architecture for intrisically-motivated learning (GRAIL), a four-level architecture that is able to autonomously: 1) discover changes in the environment; 2) form representations of the goals corresponding to those changes; 3) select the goal to pursue on the basis of intrinsic motivations (IMs); 4) select suitable computational resources to achieve the selected goal; 5) monitor the achievement of the selected goal; and 6) self-generate a learning signal when the selected goal is successfully achieved. Building on previous research, GRAIL exploits the power of goals and competence-based IMs to autonomously explore the world and learn different skills that allow the robot to modify the environment. To highlight the features of GRAIL, we implement it in a simulated iCub robot and test the system in four different experimental scenarios where the agent has to perform reaching tasks within a 3-D environment.
2016
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Computer architecture
Biology
Computational modeling
Three-dimensional displays
Service robots
Buildings
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/319295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact