The pomaces from red grapes were used as a source of phenolic antioxidants, which are known to have health-promoting effects. Environmentally-friendly extraction strategies were investigated to improve the rate and recovery of an extract with high phenolic content and antioxidant activity, which were evaluated by the Folin-Ciocalteu, DPPH center dot, ABTS(center dot+), CUPRAC and FRAP assays. The extract was incorporated in liposomes, which were stabilized by the addition of a natural polysaccharide, sodium alginate or arabic gum, widely used in pharmaceutical and food industries as thickeners and stabilizers. Results showed that the polymer-associated liposomes were approximately 300 nm in size, spherical in shape, and with high entrapment efficiency. The polymers prevented vesicle degradation in the gastric environment, and played a key role in improving liposomes' performances, especially arabic gum. The polymer-associated liposomes were biocompatible and protected Caco-2 cells against oxidative stress. The achieved results suggest a potential application of the polymer-associated liposomes loaded with the grape pomace extract in the nutraceutical field. (C) 2016 Elsevier B.V. All rights reserved.

Polymer-associated liposomes for the oral delivery of grape pomace extract

D'hallewin Guy;
2016

Abstract

The pomaces from red grapes were used as a source of phenolic antioxidants, which are known to have health-promoting effects. Environmentally-friendly extraction strategies were investigated to improve the rate and recovery of an extract with high phenolic content and antioxidant activity, which were evaluated by the Folin-Ciocalteu, DPPH center dot, ABTS(center dot+), CUPRAC and FRAP assays. The extract was incorporated in liposomes, which were stabilized by the addition of a natural polysaccharide, sodium alginate or arabic gum, widely used in pharmaceutical and food industries as thickeners and stabilizers. Results showed that the polymer-associated liposomes were approximately 300 nm in size, spherical in shape, and with high entrapment efficiency. The polymers prevented vesicle degradation in the gastric environment, and played a key role in improving liposomes' performances, especially arabic gum. The polymer-associated liposomes were biocompatible and protected Caco-2 cells against oxidative stress. The achieved results suggest a potential application of the polymer-associated liposomes loaded with the grape pomace extract in the nutraceutical field. (C) 2016 Elsevier B.V. All rights reserved.
2016
Istituto di Scienze delle Produzioni Alimentari - ISPA
Grape pomace
Phenolic extraction
Antioxidant
Polymer-associated liposomes
File in questo prodotto:
File Dimensione Formato  
prod_362842-doc_119542.pdf

solo utenti autorizzati

Descrizione: Polymer-associated liposomes ...
Tipologia: Versione Editoriale (PDF)
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/320033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 44
social impact