Whereas in classic robotic applications there is a clear segregation between robots and operators, novel robotic and cyber-physical systems have evolved in size and functionality to include the collaboration with human operators within common workspaces. This new application field, often referred to as Human-Robot Collaboration (HRC), raises new challenges to guarantee system safety, due to the presence of operators. We present an innovative methodology, called SAFER-HRC, centered around our logic language TRIO and the companion bounded satisfiability checker Zot, to assess the safety risks in an HRC application. The methodology starts from a generic modular model and customizes it for the target system; it then analyses hazards according to known standards, to study the safety of the collaborative environment
SAFER-HRC: Safety Analysis Through Formal vERification in Human-Robot Collaboration
Vicentini;Federico
2016
Abstract
Whereas in classic robotic applications there is a clear segregation between robots and operators, novel robotic and cyber-physical systems have evolved in size and functionality to include the collaboration with human operators within common workspaces. This new application field, often referred to as Human-Robot Collaboration (HRC), raises new challenges to guarantee system safety, due to the presence of operators. We present an innovative methodology, called SAFER-HRC, centered around our logic language TRIO and the companion bounded satisfiability checker Zot, to assess the safety risks in an HRC application. The methodology starts from a generic modular model and customizes it for the target system; it then analyses hazards according to known standards, to study the safety of the collaborative environmentI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.