We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov-Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory.

Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average

Scarfone A. M.;
2016

Abstract

We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov-Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory.
2016
Istituto dei Sistemi Complessi - ISC
Kolmogorov-Nagumo average
Rényi entropy
Sharma-Mittal entropy
Sharma-Taneja-Mittal entropy
Structure of Legendre transform
File in questo prodotto:
File Dimensione Formato  
prod_358163-doc_186578.pdf

accesso aperto

Descrizione: Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 110.04 kB
Formato Adobe PDF
110.04 kB Adobe PDF Visualizza/Apri
prod_358163-doc_188700.pdf

solo utenti autorizzati

Descrizione: Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 252.8 kB
Formato Adobe PDF
252.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/320645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact