Based on Grimm and Hughes (1995) we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure which allows for the definition of function spaces such as, for instance, B-splines over multi-patch domains with extraordinary points or analysis-suitable unstructured T-splines. Within this framework, we generalize the concept of dual-compatible B-splines (developed for structured T-splines in Beirão da Veiga et al. (2013)). This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for h-refined meshes.
Unstructured spline spaces for isogeometric analysis based on spline manifolds
G Sangalli;
2016
Abstract
Based on Grimm and Hughes (1995) we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure which allows for the definition of function spaces such as, for instance, B-splines over multi-patch domains with extraordinary points or analysis-suitable unstructured T-splines. Within this framework, we generalize the concept of dual-compatible B-splines (developed for structured T-splines in Beirão da Veiga et al. (2013)). This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for h-refined meshes.File | Dimensione | Formato | |
---|---|---|---|
prod_356986-doc_121326.pdf
accesso aperto
Descrizione: Unstructured spline spaces for isogeometric analysis based on spline manifolds
Tipologia:
Versione Editoriale (PDF)
Dimensione
691.62 kB
Formato
Adobe PDF
|
691.62 kB | Adobe PDF | Visualizza/Apri |
prod_356986-doc_152661.pdf
solo utenti autorizzati
Descrizione: Unstructured spline spaces for isogeometric analysis based on spline manifolds
Tipologia:
Versione Editoriale (PDF)
Dimensione
684.99 kB
Formato
Adobe PDF
|
684.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.