In the present paper we consider a 1-D, single spring-slider analog model of fault and we solve the equation of motion within the coseismic time window. We incorporate in the dynamic problem different rheologic behavior, starting from the Coulomb friction (which postulates a constant value of the dynamic resistance), then the viscous rheology (where the friction resistance linearly depends on the sliding speed), and finally a version of the more refined rate-and state-dependent friction law. We present analytical solutions of the equation of motion for the different cases and we are able to find the common features of the solutions, in terms of the most important physical observables characterizing the solutions of a 1-D dynamic fault problem; the peak slip velocity, the time at which it is attained (or, in other words, the so-called rise time), the total cumulative slip developed at the end of the process (assumed to occur when the sliding speed vanishes or become comparable to its initial value). We also extract some useful dependences of these quantities on the parameters of the models. Finally, we compare the spectral behavior of the resulting sliding velocity and its fall-off at high frequencies.

Single slip dynamics

Alberto Petri
2016

Abstract

In the present paper we consider a 1-D, single spring-slider analog model of fault and we solve the equation of motion within the coseismic time window. We incorporate in the dynamic problem different rheologic behavior, starting from the Coulomb friction (which postulates a constant value of the dynamic resistance), then the viscous rheology (where the friction resistance linearly depends on the sliding speed), and finally a version of the more refined rate-and state-dependent friction law. We present analytical solutions of the equation of motion for the different cases and we are able to find the common features of the solutions, in terms of the most important physical observables characterizing the solutions of a 1-D dynamic fault problem; the peak slip velocity, the time at which it is attained (or, in other words, the so-called rise time), the total cumulative slip developed at the end of the process (assumed to occur when the sliding speed vanishes or become comparable to its initial value). We also extract some useful dependences of these quantities on the parameters of the models. Finally, we compare the spectral behavior of the resulting sliding velocity and its fall-off at high frequencies.
2016
Istituto dei Sistemi Complessi - ISC
Rheology of faults; Dynamic modelling; Numerical algorithms
File in questo prodotto:
File Dimensione Formato  
prod_358189-doc_121500.pdf

solo utenti autorizzati

Descrizione: Single slip dynamics
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact