Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe1-xO/Fe3-delta O4 core-shell nanocubes to Fe3-delta O4 phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe-1 O-x core to Fe3-delta O4, as evidenced by structural analysis including high resolution electron microscopy and Rietveld an alysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe3-delta O4 domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to gamma-Fe2O3. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 degrees C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.
Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation
Bertoni G;Giannini C;
2016
Abstract
Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe1-xO/Fe3-delta O4 core-shell nanocubes to Fe3-delta O4 phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe-1 O-x core to Fe3-delta O4, as evidenced by structural analysis including high resolution electron microscopy and Rietveld an alysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe3-delta O4 domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to gamma-Fe2O3. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 degrees C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


