We describe the synthesis, computational analysis, photophysics, electrochemistry and electrochemiluminescence (ECL) of a series of compounds formed of two triphenylamines linked by a fluorene or spirobifluorene bridge. The phenylamine moieties were modified at the para-position of the two external rings by electron-withdrawing or electron-donating substituents. These modifications allowed for fine-tuning of the photoluminescence (PL) and ECL emission from blue to green, with an overall wavelength span of 73 (PL) and 67 (ECL) nm, respectively. For all compounds, we observed a very high PL quantum yield (79-89%) and formation of stable radical ions. The ECL properties were investigated by direct annihilation of the electrogenerated radical anion and radical cation. The radical-ion annihilation process is very efficient and causes an intense greenish-blue ECL emission, easily observable even by naked eye, with quantum yield higher than the standard 9,10diphenylanthracene. The ECL spectra show one single band that almost matches the PL band. Because the energy of the annihilation reaction is higher than that required to form the singlet excited state, the S-route is considered the favored pathway followed by the ECL process in these molecules. All these features point to this type of molecular system as promising for ECL applications.

From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes

Rizzo F;Bottaro G;Fantacci S;Armelao L;Quici S;
2017

Abstract

We describe the synthesis, computational analysis, photophysics, electrochemistry and electrochemiluminescence (ECL) of a series of compounds formed of two triphenylamines linked by a fluorene or spirobifluorene bridge. The phenylamine moieties were modified at the para-position of the two external rings by electron-withdrawing or electron-donating substituents. These modifications allowed for fine-tuning of the photoluminescence (PL) and ECL emission from blue to green, with an overall wavelength span of 73 (PL) and 67 (ECL) nm, respectively. For all compounds, we observed a very high PL quantum yield (79-89%) and formation of stable radical ions. The ECL properties were investigated by direct annihilation of the electrogenerated radical anion and radical cation. The radical-ion annihilation process is very efficient and causes an intense greenish-blue ECL emission, easily observable even by naked eye, with quantum yield higher than the standard 9,10diphenylanthracene. The ECL spectra show one single band that almost matches the PL band. Because the energy of the annihilation reaction is higher than that required to form the singlet excited state, the S-route is considered the favored pathway followed by the ECL process in these molecules. All these features point to this type of molecular system as promising for ECL applications.
2017
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
electrochemiluminescence
spirobifluorene
fluorene
triphenylamines
emission tunability
File in questo prodotto:
File Dimensione Formato  
prod_366795-doc_121181.pdf

solo utenti autorizzati

Descrizione: From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes
Tipologia: Versione Editoriale (PDF)
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/325858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? ND
social impact